

EE-490(i)	Lab in nanoelectr	onics				
	Kis Andras					
Cursus		Sem.	Туре	Language of	English	
Electrical and Electronical Engineering		MA1, MA3	Opt.	teaching	English	
				Credits	4	
				Withdrawal	Unauthorized	
				Session	Winter	
				Semester	Fall	
				Exam	During the semester	
				Workload	120h	
				Weeks	14	
				Hours	4 weekly	
				TP	4 weekly	
				from this s		

Summary

The students will learn techniques for fabrication and characterization of functional nanoelectronic devices through hands-on experiments in a laboratory and in the EPFL cleanroom.

Content

- 1. Nanomaterial preparation
- 2. Nanomaterial characterisation
- 3. Integration into functional electronic devices
- 4. Lithography and patterning
- 4. Characterisation of FETs, memory and optoelectronic devices based on 2D materials

Keywords

Nanoelectronics, nanodevices, 2D materials, transistors, memory devices.

Learning Prerequisites

Required courses Semiconductor devices I General Physics 4

Recommended courses Semiconductor devices II