PHYS-640 Neutron and X-ray Scattering of Quantum Materials | | Rønnow Henrik M., Schmitt Thorsten | | |-----------|------------------------------------|------| | Cursus | Sem. | Type | | Ingphys | MA1, MA3 | Opt. | | Physicien | MA1, MA3 | Opt. | | Physics | | Opt. | | Language of teaching | English | |----------------------|-----------| | Credits | 4 | | Session | Winter | | Semester | | | Exam | Oral | | Workload | 120h | | Weeks | | | Hours | 56 weekly | | Courses | 28 weekly | | Exercises | 28 weekly | | Number of positions | | ### Frequency Every year ### Remark Next time: Fall #### Summary Neutron scattering is one of the most powerful and versatile experimental methods to study the structure and dynamics of materials on the nanometer scale. This course covers basic theory, instrumentation and scientific applications. ### Content The application of the neutron scattering spans from crystaline matter to bio-materials and engineering, including fields like magnetism and superconductivity. Similar to the vast possibilities with X-rays at synchrotron facilities, neutron scattering is a so-called large scale facility technique with neutron facilities among other at PSI in Switzerland, ILL in Grenoble and a new joint European Spallation Source under construction in Sweden. The course provides an introduction to the versatile experimental techniques of neutron scattering and covers the following aspects: - 1) Theory of the neutron scattering cross section - 2) Neutron sources and neutron instrumentation - 3) Neutron imaging, neutron reflectivity and neutron small angle scattering - 4) Neutron diffraction, crystal structures - 5) Inelastic neutron scattering, phonons - 6) Magnetic neutron scattering, magnetic structures - 7) Inelastic magnetic neutron scattering, magnetic dynamics - 8) Resonant Inelastic X-ray Scattering (RIXS) a complementary technique The course contain lectures and exercise sessions. Exercise sessions will contain deriving relevant formulas, monte-carlo simulation of neutron scattering experiments, and discussion of representative scientific articles using neutron scattering. The course is given every second year, alternating with a course about magnetism in solids. ### Keywords Neutron Scattering, X-ray spectroscopy, diffraction, crystal structures, lattice vibrations, phonons, magnetism, spin waves, magnons, neutron imaging ## **Learning Prerequisites** # Required courses Solid State Physics 1 and 2; Basic quantum mechanics ## **Expected student activities** Plan, predict and interpret neutron scattering experiments Read and evaluate articles containing neutron scattering results ## Resources ## **Bibliography** Lecture notes, example articles ### Websites • http://lqm.epfl.ch