PHYS-607	Nonlinear fibre optics

Brès Camille Sophie, Thévenaz Luc

Cursus	Sem.	Туре		
Photonics	••••	Opt.	Language of teaching	English
		••••	Credits	2
			Session	
			Semester	
			Exam	Oral presentation
			Workload	60h
			Weeks	
			Hours	28 weekly
			Courses	28 weekly
			Number of positions	

Frequency

Every 2 years

Remark

Next time : Fall 2022 to be confirmed

Summary

Presentation of the different sources of optical nonlinearities in an optical fibre

Content

- Presentation of the different sources of optical nonlinearities in an optical fibre.
- 3rd order optical nonlinearity: 4-wave mixing, optical Kerr effect, pulse compression and soliton propagation, parametric amplification, modulation instability.

• Inelastic scatterings: spontaneous Brillouin and Raman scatterings, stimulated scatterings, amplification and lasers, distributed fibre sensors.

• Advanced applications: supercontinuum generation, optical combs, optical clocks, slow and fast light.

Keywords

Optical fibres, nonlinear optics, 4-wave mixing, stimulated scattering, fibre optics sensors, slow and fast light.

Learning Prerequisites

Recommended courses

Solid knowledge in electromagnetics, in optics and waveguiding