

PHYS-424	Plasma II				
	Reimerdes Holger				
Cursus		Sem.	Type	Language of	English
Energy minor		E	Opt.	teaching Credits	Liigiisii
Ingphys		MA2, MA4	Opt.		6
Physicien		MA2, MA4	Opt.	Session Semester	Summer Spring
				Exam	Oral
				Workload	180h
				Weeks	14
				Hours	4 weekly
				Courses	2 weekly
				Exercises	2 weekly
				Number of positions	

Summary

This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of controlled fusion and magnetic confinement, astrophysical and space plasmas, and societal and industrial applications.

Content

A. Fusion energy

- Basics (nuclear reactions, the Lawson criterion)
- Inertial Confinement: Physics issues and the reactor concept
- Magnetic Confinement: MHD model
- Magnetic Confinement: Tokamak equilibrium, instabilities and operational limits
- Magnetic Confinement: Transport theoretical basis and phenomenology
- Magnetic Confinement: Heating, burning plasmas, ITER and route to a power plant

B. Industrial applications

- The basics of plasma discharges for industrial applications
- Examples of plasma applications in industry and medicine

C. Plasmas in nature

- · Astrophysics and space plasmas
- Solar physics radiation transport and dynamo
- Magnetic reconnection and particle acceleration

D. Plasma diagnostics

· Categories of plasma diagnostics

Plasma II Page 1 / 2

• Measurements of plasma properties, magnetic properties and processes at the plasma-material interface

Learning Prerequisites

Recommended courses

PHYS-324 Classical electrodynamics, PHYS-325 Plasma physics I (2020-21, now called Introduction to plasma physics) and PHYS-423 Plasma I.

Learning Outcomes

By the end of the course, the student must be able to:

- Work out / Determine when plasma effects are important
- Describe various applications of plasma physics
- Identify the main components and physics issues of magnetic and inertial confinement fusion
- Describe the main scientific issues in astrophysical plasmas
- Describe the main advantages of plasmas in industrial applications
- · Describe the physics basis of key plasma diagnostics

Teaching methods

Ex cathedra and exercises in class

Assessment methods

oral exam

Resources

Websites

https://crppwww.epfl.ch/physplas3/

Plasma II Page 2 / 2