| ENV-410 | Science  | of climate | change |
|---------|----------|------------|--------|
|         | SCIEILCE |            | Change |

| Schmale Julia                           |      |      |
|-----------------------------------------|------|------|
| Cursus                                  | Sem. | Туре |
| Managmt, dur et tech                    | MA1  | Obl. |
| Minor in Engineering for sustainability | Н    | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 4        |
| Session              | Winter   |
| Semester             | Fall     |
| Exam                 | Written  |
| Workload             | 120h     |
| Weeks                | 14       |
| Hours                | 4 weekly |
| Courses              | 2 weekly |
| Exercises            | 2 weekly |
| Number of            |          |
| positions            |          |

## Summary

The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions, the IPCC assessment to future scenarios and climate action.

### Content

**The basics:** physics and chemistry of the climate system, historical climate change, climate variability and sensitivity **Climate change assessment**: IPCC review of present-day climate change, tipping elements, extremes, regional climate change

Scenarios and carbon budget: climate change scenarios, remaining carbon budget, climate metrics, short-lived climate forcers/pollutants

Climate action: mitigation, adaptation and climate engineering

## Keywords

Climate change, regional climate change, Earth system, IPCC, greenhouse gases, climate scenarios, climate action

#### **Learning Prerequisites**

Required courses

none

Recommended courses ENV-320 : Physics and chemistry of the atmosphere ENV-400 : Air pollution and climate change

Important concepts to start the course Basics of physics and chemistry

## Learning Outcomes

By the end of the course, the student must be able to:

- Express the basic physics and chemistry of climate change
- Discuss the concepts of climate variability and climate sensitivity
- Reason why present day climate change is different from historical climate change
- Contrast climate change scenarios



- Apply simple climate metrics
- Interpret basic climate data and model output
- Critique mitigation, adaptation and climate engineering options

## **Transversal skills**

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Communicate effectively with professionals from other disciplines.
- Give feedback (critique) in an appropriate fashion.
- Summarize an article or a technical report.
- Access and evaluate appropriate sources of information.

### **Teaching methods**

In-depth teaching. Exercises with educational support. Project work in teams. Discussions.

### **Expected student activities**

Lecture attendance, exercise assignments, project work, presentations

### **Assessment methods**

50 % exercises, 50 % exam

### **Supervision**

| Assistants | Yes |
|------------|-----|
| Forum      | Yes |

### Resources

## Bibliography

Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, New York, 2016.
John M. Wallace and Peter V. Hobbs Atmospheric Science, An Introductory Survey, Elsevier, Amsterdam, 2006
Peixoto, José P., Physics of climate, New York : American Institute of Physics, 1992, Krauss, Lawrence M, The Physics of Climate Change, London: Head of Zeus, 2021

#### Ressources en bibliothèque

- The Physics of Climate Change / Krauss
- Atmospheric Science / Wallace
- Atmospheric Chemistry and Physics / Seinfeld
- Physics of climate / Peixoto

## Notes/Handbook

lecture slides

# Websites

- http://5th assessment report of the Intergovernmental Panel on Climate Change: https://www.ipcc.ch/report/ar5/syr/
- http://Special report on Global Warming of 1.5°C by the IPCC: https://www.ipcc.ch/sr15/
- http://Special report on the Ocean and Cryosphere in a Changing Climate: https://www.ipcc.ch/srocc/

- http://National Oceanic and Atmospheric Administration, Global Monitoring Laboratory: https://gml.noaa.gov/ccgg/trends/
- http://Global Carbon Project: https://www.globalcarbonproject.org/