EPFL

PHYS-206	Physics IV				
	Banerjee Mitali				
Cursus		Sem.	Туре	Language of	English
Physics		BA4	Obl.	teaching	Englion
				Credits	6
				Session	Summer
				Semester	Spring
				Exam	Written
				Workload	180h
				Weeks	14
				Hours	6 weekly
				Courses	4 weekly
				Exercises	2 weekly
				Number of positions	5

Summary

Wave physics, Introduction to quantum mechanics.

Content

Electromagnetism (2nd part)

Electromagnetic induction and Faraday's law; Maxwell equations; electromagnetic energy, Poynting vector.

Wave physics

Mechanical and electromagnetic waves: propagation, energy and wave motion, attenuation, Doppler effect; principle of superposition of waves: standing waves, beats, interferences; interactions waves-medium: refraction, reflection, diffraction, diffusion.

Introduction to quantum mechanics

Limits of classical mechanics: black body radiation, the photoelectric effect, the Compton effect, Franck-Hertz experiment, spectroscopy. Wave-particle dual behavior, De Broglie waves: Heisenberg's uncertainty principle, wave function. Schrödinger's equation, 1D problems: particle in a box, potential wells and barriers, barrier tunneling. The hydrogen atom.

Learning Prerequisites

Required courses Physics I, II and III

Learning Outcomes

By the end of the course, the student must be able to:

- Elaborate a model of a physical phenomena
- Formulate hypotheses to simplify a model of a physical phenomena
- Solve the mathematics necessary to construct a model of a physical phenomena
- Critique the results of a model of a physical phenomena
- · Apply models to solve problems and applications

Teaching methods Ex cathedra and exercises in class

Assessment methods

Exercises every week will be graded and in the finals will carry maximum of 0.5 in the total credit of the course

Supervision

No
Yes
No
No

Resources

Bibliography

Lectures notes and list of recommended books