MICRO-553

Microtechnics

Neuro-X minor

Cursus

Neuro-X

Robotics

				EFCL.	
Haptic human robot interfaces					
Bouri Mohamed, Shok	ur Solaiman				
	Sem.	Туре	Language of	English	
	MA2, MA4	Opt.	teaching	Linglish	
	E	Opt.	Credits	3	
	MA2	Opt.	Withdrawal Session	Unauthorized Summer	

Semester

Exam Workload

Weeks

Hours

Courses

Project

Number of

positions

Summary

This course teaches basic knowledge on haptic devices, force feedback and mechanical man-machine interfaces. Lectures are about 40 %, the rest is hands-on practical work with the "haptic paddle", a complete mechanical device with full laptop control interface. Realization of project in groups of 2.

MA2, MA4

Opt.

Content

Keywords

Haptics - Haptic Interfaces - Human Robot Interfaces - Psychophysics - Impedance contol - Admittance control

Learning Prerequisites

Recommended courses Basics of Robotics

Learning Outcomes

By the end of the course, the student must be able to:

- Design a haptic interface for robot, rehabilitation, prothesis, exoskeleton
- Realize a haptic interface for robot, rehabilitation, prothesis, exoskeleton
- Analyze a haptic interface for robot, rehabilitation, prothesis, exoskeleton
- Assess / Evaluate a haptic interface for robot, rehabilitation, prothesis, exoskeleton
- · Propose a haptic interface for robot, rehabilitation, prothesis, exoskeleton
- Defend the proposed solution
- Explain the purpose and function of a haptic interface

Transversal skills

- Set objectives and design an action plan to reach those objectives.
- · Communicate effectively, being understood, including across different languages and cultures.

Spring

2 weekly

1 weekly

Oral

90h

14 3 weekly

32

It is not allowed to withdraw from this subject after the registration deadline.

- Communicate effectively with professionals from other disciplines.
- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.
- Write a literature review which assesses the state of the art.
- Make an oral presentation.
- Summarize an article or a technical report.

Teaching methods

Lectures Labs and Hands On, using a Haptic Paddle Seminars Lab specialization

Expected student activities

Attendance to lectures from EPFL and guest lecturers Labs which count in the final grade Lab specialization which counts in the final grade

Assessment methods

Oral examination

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Virtual desktop infrastructure (VDI) No

Moodle Link

• https://go.epfl.ch/MICRO-553