# CS-487 Industrial automation

| Sommer Philipp Alexander                  | , Tournier Jea | an-Charles |                                                                                                 |                                                                                |
|-------------------------------------------|----------------|------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Cursus                                    | Sem.           | Type       | Language of                                                                                     | English                                                                        |
| Computer science                          | MA2, MA4       | Opt.       | teaching Credits Session Semester Exam Workload Weeks Hours Courses Project Number of positions | Liigiisii                                                                      |
| Cybersecurity                             | MA2, MA4       | Opt.       |                                                                                                 | 3<br>Summer<br>Spring<br>Oral<br>90h<br>14<br>3 weekly<br>2 weekly<br>1 weekly |
| Electrical and Electronical Engineering   | MA2, MA4       | Opt.       |                                                                                                 |                                                                                |
| Energy Science and Technology             | MA2, MA4       | Opt.       |                                                                                                 |                                                                                |
| Mechanical engineering                    | MA2, MA4       | Opt.       |                                                                                                 |                                                                                |
| Microtechnics                             | MA2, MA4       | Opt.       |                                                                                                 |                                                                                |
| Robotics, Control and Intelligent Systems |                | Opt.       |                                                                                                 |                                                                                |
| Robotics                                  | MA2, MA4       | Opt.       |                                                                                                 |                                                                                |
| SC master EPFL                            | MA2, MA4       | Opt.       |                                                                                                 |                                                                                |

### Remark

This course can be taken by students of all engineering sections.

### **Summary**

This course consists of two parts: 1) architecture of automation systems, hands-on lab 2) handling of faults and failures in real-time systems, including fault-tolerant computing

## Content

Trends like digitalization and internet of things affect the way industrial plants are designed, deployed and operated. Industrial Automation comprises the control, communication and software architecture in (real-time) automation systems: factories, energy production and distribution, vehicles and other embedded systems.

## Keywords

- 1. Processes and plants, automation system architecture
- 2. Instrumentation, Programmable Logic Controllers and embedded computers
- 3. Industrial communication networks, field busses
- 4. Field device access protocols and application program interfaces
- 5. Human interface and supervision
- 6. Dependability (Reliability, Availability, Safety, ...)
- 6. Real-time response and performance analysis

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Characterize the (software) architecture of a automation system
- Apply methods and trade-offs in real-time systems
- · Analyze a plant
- Propose suitable automation solutions meeting the requirements
- · Analyze the reliability, availability, safety of a system

### Transversal skills

- Write a scientific or technical report.
- Use both general and domain specific IT resources and tools

Industrial automation Page 1 / 2



- Communicate effectively with professionals from other disciplines.
- · Keep appropriate documentation for group meetings.
- Access and evaluate appropriate sources of information.

# **Teaching methods**

Oral presentation aided by slides, exercises as part of the lecture, practical work (workshop at Siemens and group assignment).

# **Expected student activities**

- Understand material presented during lectures by asking questions and/or independent (online) searches
- · Attend Siemens workshop (one full day on Siemens premises in Renens based on availability)
- · Work on group assignment
- Hand-in artifacts for assignment on time

### **Assessment methods**

Assignment 25% and final oral exam 75%

### Resources

### **Bibliography**

Nussbaumer, Informatique Industrielle (EPFL)

Olsson, Gustav & Rosen, Christian - industrial automation, Dept. of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden.

Introduction to Industrial Automation, Stamatios Manesis & George Nikolakopoulos, CRC Press, 2018

## Ressources en bibliothèque

- Introduction to Industrial Automation / Manesis
- Informatique Industrielle / Nussbaumer

## **Moodle Link**

• https://go.epfl.ch/CS-487

Industrial automation Page 2 / 2