

positions

EE-585 Space mission design and operations

Nicollier Claude				
Cursus	Sem.	Type	Language of	English
Electrical and Electronical Engineering	MA2, MA4	Opt.	teaching Credits Session Semester Exam	Liigiisii
Mechanical engineering	MA2, MA4	Opt.		2 Summer Spring Oral
Microtechnics	MA2, MA4	Opt.		
Space technologies minor	Е	Opt.		
•		-	Workload	60h
			Weeks	14
			Hours	2 weekly
			Courses	2 weekly
			Number of	

Summary

This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is at least partly based on the practical space experience of the lecturer.

C

Content			

- Brief review of the fundamental laws of mechanics
- Types of space missions and their objectives.
- General concepts of space vehicles.
- The Space environment.
- Applied orbital mechanics, including interplanetary trajectories.
- Rendez-vous in space.
- Propulsion.
- Attitude determination and control.
- On board systems.
- · Risk management.

Examples: Space Shuttle, Space Station, Tethered Satellite, the Hubble Space Telescope.
Extravehicular Activities.
Future programs.
Keywords
Space systems
Space research
Space exploration
Space engineering
Space operations

Learning Prerequisites

Required courses

• Bachelor level courses in physics, vector analysis, and calculus

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate space mission goal and objectives
- Design mission to reach goal
- Assess / Evaluate competing designs

Transversal skills

- Communicate effectively with professionals from other disciplines.
- Communicate effectively, being understood, including across different languages and cultures.

Teaching methods

28 hour course in the spring semester, out of which 12 hours are exercise hours, to reinforce the concepts presented in the course.

Dates (2023), all in ELA1, 17:15 to 19:00

February 20 (course introduction)

March 6 and 8

March 20 and 22

April 3 and 5

April 17 and 19

May 1 and 3

May 15 and 17

May 31

June 5 (course review, optional)

Expected student activities

actively participate in the course and exercise sessions

Assessment methods

oral examination

Supervision

Office hours Yes
Assistants Yes
Forum No

Resources

Bibliography

provided in the course introduction

Notes/Handbook

Course notes available before each course on Moodle

Websites

- http://www.nasa.gov
- http://www.esa.int

Moodle Link

• https://go.epfl.ch/EE-585