

CS-451 **Distributed algorithms**

Guerraoui Rachid		
Cursus	Sem.	Type
Computer and Communication Sciences		Opt.
Computer science minor	Н	Opt.
Computer science	MA1, MA3	Obl.
Cybersecurity	MA1, MA3	Obl.
Data Science	MA1, MA3	Opt.
Quantum Science and Engineering	MA1	Opt.
SC master EPFL	MA1, MA3	Obl.

Language of teaching	English
Credits	8
Session	Winter
Semester	Fall
Exam	Written
Workload	240h
Weeks	14
Hours	6 weekly
Courses	3 weekly
Exercises	2 weekly
TP	1 weekly
Number of	
positions	

Summary

Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machines or communication links. This course will study the foundations of reliable distributed computing.

Content

Reliable broadcast

Causal Broadcast

Total Order Broadcast

Consensus

Non-Blocking Atomic Commit

Group Membership, View Synchrony

Terminating Reliable Broadcast

Shared Memory in Message Passing Systems

Byzantine Fault Tolerance

Self Stabilization

Population protocols (models of mobile networks)

Bitcoin, Blockchain

Distributed Machine Learning

Gossip

Keywords

Distributed algorithms, checkpointing, replication, consensus, atomic broadcast, ditributed transactions, atomic commitment, 2PC, Machine Learning

Learning Prerequisites

Required courses

Basics of Algorithms, networking and operating systems

Recommended courses

The lecture is orthogonal to the one on concurrent algorithms: it makes a lot of sense to take them in parallel.

Learning Outcomes

By the end of the course, the student must be able to:

Distributed algorithms

- Choose an appropriate abstraction to model a distributed computing problem
- Specify the abstraction
- Present and implement it
- Analyze its complexity
- Prove a distributed algorithm
- Implement a distributed system

Teaching methods

Ex cathedera Lectures, exercises and practical work

Assessment methods

Final exam Project

Resources

Ressources en bibliothèque

• Introduction to reliable and secure distributed programming / Cachin

Notes/Handbook

Reliable and Secure Distributed Programming Springer Verlag C. Cachin, R. Guerraoui, L. Rodrigues

Moodle Link

• https://go.epfl.ch/CS-451

Distributed algorithms Page 2 / 2