. .

CH-401	Advanced nuclear magnetic resonance			
	Emsley Lyndon			
Cursus		Sem.	Туре	Langua
Chemistry		BA6	Obl.	teachin

.

Cursus	Sem.	Туре	Language of	English
Chemistry	BA6	Obl.	teaching	Ligisii
HES - CGC	E	Opt.	Credits	3
		-	Session	Summer
			Semester	Spring
			Exam	Written
			Workload	90h
			Weeks	14
			Hours	2 weekly
			Courses	2 weekly
			Number of positions	

Summary

011 404

Principles of Magnetic Resonance Imaging (MRI) and applications to medical imaging. Principles of modern multi-dimensional NMR in liquids and solids. Structure determination of proteins & materials. Measurement of molecular dynamics. Principles of Hyperpolarization.

Content

- Projections of objects using magnetic field gradients.
- Image reconstruction by back-projection and by Fourier transformation.
- Contrast based on relaxation, diffusion, and contrast agents.
- Functional imaging.
- Imaging of flow and angiography.
- Advanced multi-dimensional correlation methods in magnetic resonance. Applications to protein strucutre determination and to determination of metabolism.
- Principles of multiple-pulse solid-state NMR. Applications to materials science.
- Principles of Nuclear Hyperpolarization and applications to imaging and spectroscopy.

Learning Prerequisites

Required courses None

Recommended courses Strcutural Analysis (CH-314)

Important concepts to start the course Basic physical, organic, inorganic and biological chemistry

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate the meaning and limitations of MRI pictures
- · Assess / Evaluate an approach to structure determination of molecules by NMR

- Design an NMR based approach to characterising materials
- Hypothesize how to produce hyperpolarized nuclear spins

Teaching methods

Lectures based on popular textbooks with ample addition of illustrations through recent applications and case studies. Regular excercise classes.

Assessment methods

Written Examination

Supervision

Assistants Yes

Resources

Notes/Handbook On Moodle

Moodle Link

• https://go.epfl.ch/CH-401