

BIO-483 Neuroscience: behavior and cognition

Blanke Olaf, Herzog Michael, Sandi Carmen

Cursus	Sem.	Type
Computational Neurosciences minor	E	Opt.
Life Sciences Engineering	MA2, MA4	Opt.
Neuro-X minor	E	Opt.
Neuro-X	MA2	Opt.
Neuroprosthetics minor	Е	Opt.
Neuroscience		Opt.

Language of teaching	English
Credits	5
Session	Summer
Semester	Spring
Exam	Written
Workload	150h
Weeks	14
Hours	5 weekly
Courses	3 weekly
Exercises	2 weekly
Number of positions	

Summary

The goal is to guide students into the essential topics of Behavioral and Cognitive Neuroscience. The challenge for the student in this course is to integrate the diverse knowledge acquired from those levels of analysis into a more or less coherent understanding of brain structure and function.

Content

Pathways into the visual brain

Perception and encoding

Attention and selective perception

Perception and consciousness

Understanding statistics

Stress and emotion

Learning and memory

Neurobiological mechanisms of memory

Emotional influences on cognitive functions

Psychiatric disorders

Structural and functional cortical neuroanatomy

Somatosensory perception and parietal cortex in human and non-human primates

Multisensory perception and parietal and premotor cortex in human and non-human primates

Perception and representation of visual space in the right hemisphere

Selected neurological disorders and human brain imaging

Bodily self-consciousness

Learning Prerequisites

Required courses

Neuroscience: from molecular mechanisms to disease (BIO-480)

Neuroscience: cellular and circuit mechanisms (BIO-482)

Assessment methods

Written exam

Resources

Bibliography

Purves D et al. Principles of Cognitive Neuroscience. 2008. Sinauer Associates: Sunderland, MA.

Gazzaniga MS. Cognitive Neuroscience. 2008 (3rd. Ed.) W. W. Norton & Company.

Ressources en bibliothèque

- Cognitive Neuroscience / Gazzaniga
- Principles of Cognitive Neuroscience / Purves

Moodle Link

• https://go.epfl.ch/BIO-483