

Environmental economics

· · · · · · · · · · · · · · · · · · ·		
Cursus	Sem.	Type
Environmental Sciences and Engineering	MA2, MA4	Opt.
Minor in Engineering for sustainability	Е	Opt.

Thalmann Philippe

Language of teaching	English
Credits	4
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	120h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of	
positions	

Summary

Introduction to economic analysis applied to environmental issues: all the necessary basic concepts, including cost-benefit analysis, for environmental policy making and its instruments (examples: climate, waste, mobility). Introduction to financial calculation applied to project evaluation.

Content

Introduction to economic analysis: Actors, supply, demand / Markets and prices / Price and quantity regulation Introduction to environmental policy: Cost-benefit analysis, objectives / Instruments for environmental policy / Comparison of instruments

Applications: Swiss climate policy (CO2 Act) / Waste management / Mobility pricing Introduction to financial calculation: Arbitrage, discounting / Net present value / Risk, diversification Project evaluation: Investment, costs (Capex, Opex) / Amortization and depreciation / Financial comparison of projects Applications: Energy retrofitting of buildings / Reparation vs replacement / Student personal projects

Keywords

environmental economics, environmental policy, cost-benefit analysis, project evaluation, financial calculus

Learning Prerequisites

Important concepts to start the course

Basic algebra and using a spreadsheet such as Excel.

Learning Outcomes

By the end of the course, the student must be able to:

- Explain price formation
- Compare environmental policy instruments
- Argue for an environmental policy
- Compute the profitability of engineering projects
- Solve small mathematical problems

Transversal skills

• Take account of the social and human dimensions of the engineering profession.

Environmental economics Page 1 / 2

- Take responsibility for environmental impacts of her/ his actions and decisions.
- Demonstrate the capacity for critical thinking

Teaching methods

In-depth teaching and educational support.

Expected student activities

Participate actively in class, learn the basic financial concepts from a MOOC in French with English subtitles.

Assessment methods

Intermediate exam (1/2 of grade) and final exam (1/2 of grade).

Supervision

Office hours No
Assistants No
Forum Yes

Resources

Notes/Handbook

Slides will be made available on a Moodle page

Moodle Link

• https://go.epfl.ch/ENV-471

Environmental economics Page 2 / 2