Summary
This class offers an overview about comfort evaluations in architectural design and suggests passive and low-energy strategies suited to ensure the highest possible indoor environment quality for buildings.

Content
This course addresses occupant comfort, its evaluation and the relevant architectural and technological strategies to achieve a high level of comfort in indoor spaces. The course is structured as follows:

• Theory lectures: Introduction to the various indoor comfort requirements in buildings and their evaluation: thermal, visual and acoustical comfort and air quality. Comfort standards and metrics are introduced, as well as passive design strategies and the main energy targets to be met using active (mechanical) systems when passive systems are not sufficient to ensure adequate indoor comfort conditions. Main building physics principles are illustrated as well as their application in emblematic existing buildings. The theoretical lectures will be complemented by the introduction into suitable software tools to calculate and evaluate the indoor comfort and main energy parameters.

• Individual exercise: Students will use and get familiar with the presented software tools by working individually on a pre-defined project. This exercise will be accompanied by dedicated sessions supported by lecturers and teaching assistants.

• Project exercise: The students will work in groups on a small design project and will have to optimize and evaluate the building under given comfort and energy requirements. This group work will be accompanied by several 'desk critique' sessions, where the students will discuss the work and receive guidance from the teachers.

Keywords
Comfort in buildings, passive architecture, building simulation.

Learning Outcomes
By the end of the course, the student must be able to:

• Integrate comfort and energy requirements in the design process.

• Analyze integration constraints in the architecture project.

• Propose passive architectural measures to ensure/improve indoor comfort.

• Choose and use adequate simulation tools to quantitatively evaluate energy performance and comfort of a design project.

Assessment methods
After the individual exercise, a written report (due at mid-term) is required. Weight: 20%.

The final exam consists of a report and an oral presentation. Weight: 80%.
Resources
Moodle Link
• https://go.epfl.ch/AR-442