

Fivet Corentin				
Cursus	Sem.	Туре	Language of	English
Architecture	MA1, MA3	Opt.	teaching	LIIGIISII
Minor in Integrated Design, Architecture and Sustainability	Н	Opt.	Credits Session	3 Winter
			Semester Exam Workload Weeks	Fall Oral 90h 12
			Hours Lecture Exercises Number of positions	3 weekly 2 weekly 1 weekly

Summary

AR-483

The class exposes students to the geometric design of material efficient architectural structures. The focus is placed on the conceptual exploration of a rich, diverse solution set. Hand-controlled methods and parametric tools are used, as well as strategies to rapidly take key decisions.

Content

- Introduction to the value of structural geometry towards the architectural project;
- Introduction to the role of design-oriented assumptions in engineering;
- Strategies for selecting and transforming load-bearing systems;
- Principles of structural design-oriented physical models;
- Formal explorations using graphic statics and force paths;
- Introduction to parametric modelling and form-finding tools;
- Historical illustrations of interactive structural design exploration.

Keywords

- Architectural structures
- Interactive conceptual design
- Force shaping
- Ressource-efficiency
- Parametric design

Learning Prerequisites

Required courses

EPFL bachelor classes on statics, structural design or equivalent.

Learning Outcomes

By the end of the course, the student must be able to:

- Choose a structural system that is relevant to given architectural, technical and environmental contexts
- Sketch a wide variety of structural forms that originally address specific issues

- Infer the geometric degrees of freedom in a given structural typology
- Use a computational tool for graphical parameterization
- Identify structural solutions that require less material for construction
- Modify a structural solution to enhance its mechanical behavior

Transversal skills

- Use a work methodology appropriate to the task.
- Communicate effectively with professionals from other disciplines.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Set objectives and design an action plan to reach those objectives.

Teaching methods

- Lectures on board or slides
- Discussions based on readings
- Theoretical and hands-on exercises, in class and homework assignments

Expected student activities

Regular work throughout the full semester and interaction in the class room.

Assessment methods

The class is punctuated by three assignments (15%) and one conceptual design project (35%). The final oral exam is worth the remaining 20%.

Resources

Bibliography Form and Forces / Allen & Zalewski

Ressources en bibliothèque

• Form and forces / Allen & Zalewski

Notes/Handbook Slides and readings will be published on Moodle.

Moodle Link

• https://go.epfl.ch/AR-483

Prerequisite for Projet de master