

| CS-526 | Learning theory |
|--------|-----------------|
|--------|-----------------|

| Macris Nicol     | as, Urbanke Rüdiger |      |                              |                  |
|------------------|---------------------|------|------------------------------|------------------|
| Cursus           | Sem.                | Туре | Language of                  | English          |
| Computer science | MA2, MA4            | Opt. | Language of teaching Credits | English          |
| Cybersecurity    | MA2, MA4            | Opt. |                              | 4                |
| Data Science     | MA2, MA4            | Opt. | Session<br>Semester          | Summer<br>Spring |
| SC master EPFL   | MA2, MA4            | Opt. | Exam                         | Written          |
| Statistics       | MA2                 | Opt. | Workload<br>Weeks            | 120h<br>14       |
|                  |                     |      | Hours                        | 4 weekly         |
|                  |                     |      | Courses                      | 2 weekly         |
|                  |                     |      | Exercises                    | 2 weekly         |
|                  |                     |      | Number of                    |                  |
|                  |                     |      | nositions                    |                  |

### Summary

Machine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.

### Content

- Basics: statistical learning framework, Probably Approximately Correct (PAC) learning, learning with a finite number of classes, Vapnik-Chervonenkis (VC) dimension, non-uniform learnability, complexity of learing.
- Neural Nets: representation power of neural nets, learning and stability, PAC Bayes bounds.
- · Graphical model learning.
- Non-negative matrix factorization, Tensor decompositions and factorization.
- · Learning mixture models.

## **Learning Prerequisites**

## **Recommended courses**

- Analysis I, II, III
- Linear Algebra
- Machine learning
- Probability
- Algorithms (CS-250)

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Explain the framework of PAC learning
- Explain the importance basic concepts such as VC dimension and non-uniform learnability
- Describe basic facts about representation of functions by neural networks
- Describe recent results on specific topics e.g., graphical mdoel learning, matrix and tensor factorization, learning mixture models

## **Teaching methods**

Learning theory Page 1 / 2



- Lectures
- Exercises

# **Expected student activities**

- Attend lectures
- Attend exercises sessions and do the homework

# **Assessment methods**

Final exam and graded homeworks

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

Others Course website

### Resources

## **Moodle Link**

• https://go.epfl.ch/CS-526

Learning theory Page 2 / 2