

Image analysis and pattern recognition

Thiran Jean-Philippe				
Cursus	Sem.	Type	Language of	English
Civil & Environmental Engineering		Opt.	teaching	Liigiisii
Data Science	MA2, MA4	Opt.	Credits Session Semester	4 Summer Spring
Electrical and Electronical Engineering	MA2, MA4	Opt.		
Life Sciences Engineering	MA2, MA4	Opt.	Exam	During the
Neuro-X minor	Е	Opt.	Workload	semester 120h
Neuro-X	MA2	Opt.	Weeks	14
Physics of living systems minor	E	Opt.	Hours Courses	4 weekly 2 weekly
Robotics, Control and Intelligent Systems		Opt.	TP	2 weekly
Robotics	MA2, MA4	Opt.	Number of positions	

Summary

This course gives an introduction to the main methods of image analysis and pattern recognition.

Content

Introduction

Digital image acquisition and properties.

Pre-processing: geometric transforms, linear filtering, image restoration.

Introduction to Mathematical Morphology

Examples and applications

Segmentation and object extraction

Thresholding, edge detection, region detection.

Segmentation by active contours. Applications in medical image segmentation.

Shape representation and description

Contour-based representation, region-based representation. Morphological skeletons

Shape recognition

Statistical shape recognition, Bayesian classification, linear and non-linear classifiers, perceptrons, neural networks and unsupervised classifiers.

Applications.

Practical works on computers

Learning Prerequisites

Recommended courses

Introduction to signal processing, Image processing

Learning Outcomes

- Use Image Pre-processing methods
- Use Image segmentation methods
- Choose shape description methods appropriate to a problem
- Use classification methods appropriate to a problem

Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Use a work methodology appropriate to the task.
- Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.
- Make an oral presentation.
- Summarize an article or a technical report.

Teaching methods

Ex cathedra and practical work and oral presentation by the students

Assessment methods

Continuous control

Resources

Bibliography

Reconnaissance des formes et analyse de scènes / Kunt Image processing, Analysis and Machine Vision / Sonka

Ressources en bibliothèque

- Image processing, Analysis and Machine Vision / Sonka
- Reconnaissance des formes et analyse de scènes / Kunt

Moodle Link

• https://go.epfl.ch/EE-451

Prerequisite for

Semester project, Master project, doctoral thesis