

MATH-453 Computational linear algebra

Kressner Daniel		
Cursus	Sem.	Type
Computational science and Engineering	MA2, MA4	Opt.
Data Science	MA2, MA4	Opt.
Ingmath	MA2, MA4	Opt.
Mathématicien	MA2	Opt.
Statistics	MA2	Opt.

Language of teaching	English
Credits	5
Session	Summer
Semester	Spring
Exam	Oral
Workload	150h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability to choose a suitable solver for a given application.

Content

Introduction

Sources of large-scale linear algebra problems. Recap of required linear algebra concepts.

Eigenvalue problems

Krylov subspace methods. Singular value problems. Preconditioned iterative methods.

Linear systems

Direct sparse factorizations. Krylov subspace methods and preconditioners.

Matrix functions

Theory and algorithms.

Keywords

linear systems, eigenvalue problems, matrix functions

Learning Prerequisites

Required courses

Linear Algebra, Numerical Analysis

Learning Outcomes

By the end of the course, the student must be able to:

- Choose method for solving a specific problem.
- Prove the convergence of iterative methods.
- Interpret the results of a computation in the light of theory.
- Implement numerical algorithms.
- Describe methods for solving linear algebra problems.
- State theoretical properties of numerical algorithms.

Teaching methods

Ex cathedra lecture, exercises in the classroom and with computer

Expected student activities

Attendance of lectures.
Completing exercises.
Completing a miniproject.
Solving problems on the computer.

Assessment methods

Miniproject and oral examination.

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Resources

Bibliography

Lecture notes will be provided by the instructor. Complimentary reading:

H. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, 2005.

G. H. Golub and C. Van Loan. Matrix computations. Johns Hopkins University Press, 1996.

Y. Saad. Iterative methods for sparse linear systems. Second edition. SIAM, 2003.

Ressources en bibliothèque

- Finite elements and fast iterative solvers / Elman
- Matrix computations / Golub
- Iterative methods for sparse linear systems / Saad

Moodle Link

• https://go.epfl.ch/MATH-453