

Numerical integration of dynamical systems

Cursus	Sem.	Туре	Language of	English
Ingmath	MA1, MA3	Opt.	teaching	Linglish
Mathématicien	MA1, MA3	Opt.	Credits Session	5 Winter
			Semester Exam	Fall Written
			Workload Weeks	150h 14
			Hours Courses	4 weekly 2 weekly
			Exercises Number of positions	2 weekly

Remark

MATH-452

pas donné en 2022-23

Summary

In this course we will introduce and study numerical integrators for multi-scale (or stiff) differential equations and dynamical systems with special geometric structures (symplecticity, reversibility, first integrals, etc.). These numerical methods are important for many applications.

Content

- Numerical integration of multi-scale or stiff differential equations.

- Numerical methods preserving geometric structures of dynamical systems (Hamiltonian systems, reversible systems, systems with first integrals, etc.

Keywords

stiff differential equations, multiscale problems, Hamiltonian systems, geometric numerical integration

Learning Prerequisites

Required courses Advanced Analysis, Linear Algebra, Numerical Analysis

Learning Outcomes

By the end of the course, the student must be able to:

- Identify stiff and Hamiltonian differential equations
- Analyze geometric and stability properties of differential equations
- Choose an appropriate method for the solution of stiff or Hamiltonian differential equations
- Analyze geometric and stability properties of numerical methods
- Implement numerical methods for solving stiff or Hamiltonian differential equations

Teaching methods

Ex cathedra lecture, exercises in classroom and with computer

Expected student activities

Attendance of lectures.

Completing exercises. Solving problems on the computer.

Assessment methods

Written

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours Yes Assistants Yes

Resources

Bibliography

E. Hairer ans G. Wanner, "Solving Ordinary Differential Equations II", second revised edition, Springer, Berlin, 1996
E. Hairer, C Lubich and G. Wanner, "Geometric Numerical Integration", second edition, Springer, Berlin,

2006

Ressources en bibliothèque

- Geometric Numerical Integration / Hairer
- Solving Ordinary Differential Equations II / Hairer

Moodle Link

• https://go.epfl.ch/MATH-452