

MATH-504	Integer optimisation				
	Eisenbrand Friedrich				
Cursus		Sem.	Type	Language of	English
Ingmath		MA2, MA4	Opt.	teaching	Liigiisii
Mathématicien		MA2	Opt.	Credits	5
			ор	Session	Summer
				Semester	Spring
				Exam	Oral
				Workload	150h
				Weeks	14
				Hours	4 weekly
				Courses	2 weekly
				Exercises	2 weekly
				Number of positions	

Summary

The course aims to introduce the basic concepts and results of integer optimization with special emphasis on algorithmic problems on lattices that have proved to be important in theoretical computer science and cryptography during the past 30 years.

Content

- 1. Integer Programming, Polyhedra and the integer hull
- 2. Complexity and approximation algorithms for classical combinatorial integer programming problems
- 3. Lattices, Minkowski's Theorem, The LLL algorithm
- 4. Breaking Knapsack Cryptosystems
- 5. Transference bounds
- 6. Integer Programming in fixed dimension
- 7. Voronoi cells and single exponential time algorithms for shortest and closest vector

Learning Prerequisites

Recommended courses

- Linear algebra 1+2
- Introduction to Algorithms or Discrete Optimization

Assessment methods

Oral Exam

Resources

Bibliography

- 1. Thomas Rothvoss, Integer Optimization and Lattices
- 2. Oded Regev, Lattices in Compter Science, Lecture Notes

Moodle Link

• https://go.epfl.ch/MATH-504

Integer optimisation Page 1 / 1