MATH-535 **Topics in algebraic geometry**

N	/Ionavari Sergej					
Cursus		Sem.	Туре	Language of	English	
Ingmath		MA2, MA4	Opt.	teaching	teaching Credits 5 Session Summer	
Mathématicien		MA2	Opt.	Credits Session		
				Semester Exam Workload Weeks Hours Courses Exercises Number of positions	Spring Oral 150h 14 4 weekly 2 weekly 2 weekly	

Summary

This course is aimed to give students an introduction to the theory of algebraic curves and surfaces. In particular, it aims to develop the students' geometric intuition and combined with the basic algebraic geometry courses to build a strong foundation for further study.

Content

- Separated and proper morphism, varieties using the language of schemes
- Recap: Divisors, sheaf cohomology and morphisms to projective spaces
- Riemann-Roch and Serre duality for curves
- Classification of curves
- Embedding of curves in projective spaces
- Algebraic surfaces
- Intersection theory on smooth surfaces
- Blow-ups
- Fibrations of surfaces

Keywords

Algebraic geometry, curves, surfaces, singularities, birational geometry

Learning Prerequisites

Required courses

- Linear algebra
- Group Theory
- Rings and Modules
- Modern Algebraic geometry

Recommended courses

- Topology I & II
- Algebraic topology

- Differential geometry
- Algebraic number theory
- Schemes
- Complex manifolds
- Complex Analysis

Learning Outcomes

- Analyze basic problems in algebraic geometry of curves and solve them.
- Recall the statements of basic theorems like Riemann-Roch, Serre duality, etc, and understand their proofs
- Compute geometric and birational invariants of curves and surfaces in basic examples.
- Formulate a sketch of the birational classification of surfaces and how to approach its proof.
- Reason intuitively about the geometry and topology of curves over the complex and finite fields.

Teaching methods

2h lectures+2h exercise sessions weekly.

Assessment methods

Oral Exam

Supervision

Office hours	Yes		
Assistants	Yes		
Forum	No		

Resources

Bibliography

We will follow mainly

- Hartshorne, Algebraic Geometry
- Liu, Algebraic Geometry and Arithmetic Curves
- Beauville, Complex Algebraic Surfaces

Other resources students may want to look at are

- R. Miranda, Algebraic Curves and Riemann Surfaces
- M. Reid, Chapters on Algebraic Surfaces

Ressources en bibliothèque

- Chapters on Algebraic Surfaces / Reid
- Algebraic Curves and Riemann Surfaces / Miranda
- Algebraic Geometry and Arithmetic Curves / Liu
- Algebraic Geometry / Hartshorne
- Algebraic Curves and Riemann Surfaces / Miranda
- Complex Algebraic Surfaces / Beauville

Références suggérées par la bibliothèque

Algebraic Varieties / Osserman

Moodle Link

• https://go.epfl.ch/MATH-535