

MATH-454 Parallel and high-performance computing

Antolin Sanchez Pablo

Cursus	Sem.	Type
Computational science and Engineering	MA1, MA3	Opt.

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	Oral
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	1 weekly
TP	1 weekly
Number of positions	

Summary

This course provides insight into a broad variety of High Performance Computing (HPC) concepts and the majority of modern HPC architectures. Moreover, the student will learn to have a feeling about what architectures are suited for several types of algorithms.

Content

HPC overview:

- · Today's HPC: Beowulf-style clusters, massively parallel architectures, hybrid computing, accelerators
- · HPC history and background
- · HPC benchmarks explained
- Multicore systems
- Scaling

Writing HPC code:

- Shared memory parallelism with OpenMP
- Distributed memory parallelism with MPI
- · Hybrid programming with OpenMP and MPI
- · GPGPU primer
- Profiling

Keywords

HPC, Parallelization, MPI, GPU

Learning Prerequisites

Required courses

- · Analysis, bachelor level
- Numerical analysis for engineers
- Matrix algebra

Recommended courses

Programming concepts in scientific computing

Learning Outcomes

By the end of the course, the student must be able to:

- · Classify the types of HPC architecture
- · Identify codes suited for parallelizing
- Apply the most commont parallelization techniques
- Implement algorithms in parallel
- Investigate the performances of parallel code
- Argue about the differences in performances between theory and practice
- Optimize the usage of hardware and software resources depending on the type of algorithm to parallelize

Transversal skills

- Set objectives and design an action plan to reach those objectives.
- Communicate effectively with professionals from other disciplines.
- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.

Teaching methods

Lectures, exercises, project work

Expected student activities

Attendance at lectures, completing exercises, writing a project

Assessment methods

Oral defense of project work

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Moodle Link

• https://go.epfl.ch/MATH-454