

MATH-311 Rings and modules

_				
Doto	L/tob	/i	700H	ŀ
Fala	KIAII	VΙ	Zsolt	

Cursus	Sem.	Type
Mathematics	BA5	Opt.

Language of English teaching Credits Session Winter Semester Fall Exam Written Workload 150h Weeks 14 Hours 4 weekly Courses 2 weekly 2 weekly Exercises Number of positions

Summary

The students are going to solidify their knowledge of ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.

Content

- -basic definitions of module theory
- -the fundamental theorem of finitely generated modules over a principal ideal domain
- -Jordan normal form
- -homological algebra
- -Hilbert's nullstellensatz
- -Krull dimension
- -transcendence degree
- -localization
- -tensor product
- -integral extensions
- -Noether normalization
- -going up theorem
- -going down theorem
- -primary decomposition

Learning Prerequisites

Required courses

- Linear algebra
- Théorie des groupes
- Anneaux et corps

Learning Outcomes

By the end of the course, the student must be able to:

- Manipulate modules over rings.
- Distinguish between properties of modules and rings
- Characterize finitely generated modules over a PID.
- Analyze rings and modules

Rings and modules Page 1/2

EPFL

• Apply the main theorems of the class

Teaching methods

ex chatedra course with exercise session

Assessment methods

- 1.) Written final exam.
- 2.) Bonus exercises to be handed in during the semsester, worth up to 30% of the final grade.

Resources

Notes/Handbook

There will be pdf notes provided for the course.

Moodle Link

• https://go.epfl.ch/MATH-311

Rings and modules Page 2 / 2