EE-424 Fundamentals of analog & mixed signal VLSI design

Cursus	Sem.	Туре	Language of	English
Data and Internet of Things minor	Н	Opt.	teaching	Ligisti
Electrical and Electronical Engineering	MA1, MA3	Obl.	Credits	4 Winter
Microtechnics	MA1, MA3	MA1, MA3 Opt. Semester	Semester	Fall
			Exam	Written
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly

Summary

This course provides the foundation for entry-level analog/mixed-signal IC designers. This course will layer advanced circuit design concepts (such as noise and distortion) over a broad range of contemporary/practical circuits. It is an expansion of EE520 and links to more advanced circuit courses.

Content

Understanding the Device and Design Methodology

- Technology Roadmap
- •
- Modeling of the MOS Transistor
- •

The Concept of Inversion Coefficient and Gm/ID Design Methodology

Understanding Process Variations and Reliability

Deeper Dive into Continuous/Discrete-time Amplifiers

•

Introduction to Noise

•

Basic Building Blocks

•

Amplifiers (OTAs and OPAMPs)

Comparators

Offset and 1/f Noise Reduction Techniques

Applied Analog/Mixed-Signal Circuits

Power Converter Circuits

Continuous-time (CT) Filters Design

•

Switched-capacitors (SC) Filters Design

Number of positions

- Phase Locked Loop
- •

Analog-to-digital / Digital-to-Analog Circuits

•

Sensor Interface

Keywords

CMOS, Integrated Circuits, Analog Circuit, Mixed-Signal Circuit, Device Model, Noise, Amplifiers, Filters, Sensors, Oscillators

Learning Prerequisites

Important concepts to start the course

- Transistor operation (as a switch or a current source)
- Laplace-domain analysis of continuous-time domain circuits and their frequency reseponse
- Feedback

Learning Outcomes

By the end of the course, the student must be able to:

- Choose appropriate design methodology for amplifier design
- Assess / Evaluate the impact of noise/variation/distortion in continuous/discrete-time circuits
- Critique on the pros/cons of various analog/mixed-signal circuit structures
- Contextualise circuit design with the characteristics of the device and the focus of the application
- Elaborate on energy-efficiency
- Elaborate on robustness

Transversal skills

- Demonstrate the capacity for critical thinking
- Access and evaluate appropriate sources of information.
- Use a work methodology appropriate to the task.

Teaching methods

Four hours per week: altenating between weeks with two 2 hour lecture and with one 2 hour lecture and one 2 hour excercise

Expected student activities

In addition to following the lectures and the excercise, the students are expected to do some home work based on the excercises.

Assessment methods

Written exam

Resources

Bibliography

Device modeling:

[1] C. C. Enz and E. A. Vittoz, Charge-based MOS Transistor Modeling, Wiley, 2006.

[2] Y. Tsividis and C. Mc Andrew, Operation and Modeling of the MOS Transistor, 3rd ed., Oxford University Press, 2001.

CMOS IC design:

[3] T. C. Carusone, D. A. Johns, K. W. Martin, Analog Integrated Circuit Design, 2nd edition, Wiley, 2012.

[4] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed., Mc Graw Hill, 2017.

[5] W. Sansen, Analog Design Essentials, Springer, 2013.

[6] A. Sedra, K. Smith, Microelectronic Circuits, 7th edition, Oxford University Press, 2015.

[7] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th ed., Wiley, 2009.

Gm/ID design methodology:

[8] David Binkley, Tradeoffs and Optimization in Analog CMOS Design, Wiley, 2008.

[9] P. Jespers, B. Murmann, Systematic Design of Analog CMOS Circuits, Cambridge, 2017.

[10] P. Jespers, The Gm over ID Methodology, Springer, 2010.

Ressources en bibliothèque

• [4] B. Razavi, Design of Analog CMOS Integrated Circuits

- [1] C. C. Enz and E. A. Vittoz, Charge-based MOS Transistor Modeling
- [3] T. C. Carusone, D. A. Johns, K. W. Martin, Analog Integrated Circuit Design
- [2] Y. Tsividis and C. Mc Andrew, Operation and Modeling of the MOS Transistor
- [7] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits
- [6] A. Sedra, K. Smith, Microelectronic Circuits
- [8] David Binkley, Tradeoffs and Optimization in Analog CMOS Design
- [9] P. Jespers, B. Murmann, Systematic Design of Analog CMOS Circuits
- [10] P. Jespers, The Gm over ID Methodology
- [5] W. Sansen, Analog Design Essentials

Moodle Link

• https://go.epfl.ch/EE-424