

MATH-563 **Student seminar in pure mathematics**

	Wyss Dimitri Stelio		
Cursus		Sem.	Type
Ingmath		MA1, MA3	Opt.
Mathématicien		MA1, MA3	Opt.

Language of English teaching Credits Winter Session Fall Semester Exam During the semester Workload 150h Weeks 14 Hours 4 weekly 2 weekly Courses 2 weekly Exercises Number of positions

Summary

In this seminar we will study the foundations of Knot theory, which studies entanglements of closed curves in three dimensional space. What seems like a simple subject in topology turns out to be a rich theory with applications to 3-manifolds, representation theory, physics and much more.

Content

- Basics of Knot theory: Link Diagrams, Reidemeister moves, Seifert surfaces
- Knot Invariants: Jones-, Alexander and HOMFLY-Polynomial
- 3-Manifold Invariants
- Connections with Representation theory

Learning Prerequisites

Recommended courses

- Introduction to differentiable manifolds
- Algebraic topology
- Rings and Modules

Learning Outcomes

By the end of the course, the student must be able to:

• Demonstrate their knowledge about knots and links.

Transversal skills

- Make an oral presentation.
- Write a scientific or technical report.
- Access and evaluate appropriate sources of information.

Teaching methods

Each participant will give a lecture on a subject in knot theory. The lecture is complemented by the professor and exercise sessions.

Expected student activities

Prepare a lecture, write lecture notes and solutions to exercises. Active participation during class and exercise sessions.

Assessment methods

The grade will depend on the participants oral presentation and written reports. There will be no final exam.

Resources

Bibliography

An Introduduction to Knot Theory by R. Lickorish.

Ressources en bibliothèque

• An Introduction to Knot Theory / Lickorish

Moodle Link

• https://go.epfl.ch/MATH-563