

PHYS-502	Interacting quantum matter
----------	----------------------------

Läuchli	Herzig	Andreas	Martin	
			_	

Cursus	Sem.	Type
Ingphys	MA1, MA3	Opt.
Physicien	MA1, MA3	Opt.

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	Oral
Workload	120h
Weeks	14
Hours	4 weekly
Courses	3 weekly
Exercises	1 weekly
Number of positions	

Summary

This course presents modern aspects of theoretical condensed matter physics with interfaces to statistical physics, quantum information theory, quantum field theory and quantum simulation.

Content

- Quantum Phase Transitions
- Topological Order
- Entanglement in Quantum Many Body Systems
- Non-Equilibrium Dynamics
- Lattice gauge theories in Condensed Matter and Synthetic Quantum Many Body Systems

Learning Prerequisites

Recommended courses

Solid State Physics III

Statistical physics III

Learning Outcomes

• Theorize modern approaches to interacting quantum matter

Transversal skills

- Continue to work through difficulties or initial failure to find optimal solutions.
- Demonstrate a capacity for creativity.
- Access and evaluate appropriate sources of information.
- Summarize an article or a technical report.

Teaching methods

Ex cathedra and exercises supervised in classroom

Assessment methods

Oral Exam (100%)

Supervision

Office hours No
Assistants Yes
Forum No

Resources

Moodle Link

• https://go.epfl.ch/PHYS-502