positions

NX-422 **Neural interfaces**

Lacour Stéphanie				
Cursus	Sem.	Type	Language of	English
Biomedical technologies minor	Н	Opt.	teaching	Liigiisii
Life Sciences Engineering	MA1, MA3	Opt.	Credits Session Semester	6 Winter Fall
Microtechnics	MA1, MA3	Opt.		
Neuro-X minor	Н	Opt.	Exam	During the
Neuro-X	MA1	Opt.	Workload	semester 180h
Robotics	MA1, MA3	Opt.	Weeks	14
			Hours	6 weekly
			Courses Exercises Number of	4 weekly 2 weekly

Summary

Neural interfaces NI are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communication), reviews current and upcoming materials and technological solutions for implantable & wearable NIs.

Content

Introduction and key concepts.

- The Human Body. The Nervous System.
- Scales. Biomaterials. Biomechanics.
- Functions. Electrophysiology.
- Communication. Standards.

Case study 1. The Cochlear Implant.

- Electrodes and leads: materials, manufacturing, electrochemical impedance spectrocopy
- Function: neuromodulation. Stimulation parameters.
- Implantable electronics. Packaging. Connectors. Stimulator. Telemetry.

Case study 2. Brain Computer Interfaces

- Invasive and wearable technologies.
- Electrodes. Scale and density. Metallic (macroscopic) electrodes. Silicon-based (micromachined) electrodes.
- Implantable electronics. CMOS-based technology. Customised ICs. Closed-loop modulation.
- Telemetry. Powering.

Case study 3. Flexible multimodal neural interfaces

- Transducers. Thin-film technologies. Electrode coatings. LEDs. Temperature. Drug delivery.
- Polymers: thermoplastics, elastomers, hydrogels.
- Functions: Mechanical stealthing. Record and stimulate.
- · Thin-film packaging.
- Implantable electronics: hybrid intergation
- Wireless communication and powering.

Keywords

Neural interfaces Page 1/3

Electrodes
Microfabrication
Biomaterials
Implantable electronics
Transducers
Telemetry
Neural Engineering

Learning Prerequisites

Recommended courses

Sensors MICRO-330, Microfabrication MICRO-301, MICRO-331 Materials MSE-207, MSE-208, BIO315 Background in neuroscience BIO311 Background in electronics

Important concepts to start the course

Basic concepts in electronics

Learning Outcomes

By the end of the course, the student must be able to:

- Design
- Develop
- Sketch
- Integrate
- Propose

Transversal skills

- Communicate effectively, being understood, including across different languages and cultures.
- Keep appropriate documentation for group meetings.
- Give feedback (critique) in an appropriate fashion.
- Make an oral presentation.
- Write a scientific or technical report.

Teaching methods

Ex cathedra lectures Exercices (once a month TBC) Team project (throughout the semester)

Expected student activities

attend weekly lectures read proposed references develop a team project

Assessment methods

Team project:

• project report (50%)

Neural interfaces Page 2 / 3

- team oral presentation (40%)
- engagement across the semester (10%)

Supervision

Office hours No
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

Books:

Neuroprosthetics: Theory and Practice (Second Edition) K.Horch, D. Kipke

Brain computer interface technologies

Claude Clément

Ressources en bibliothèque

- Brain computer interface technologies / Claude Clément
- Neuroprosthetics: theory and practice / Horch, Kipke. 2nd edition

Références suggérées par la bibliothèque

- Advanced Procedures for Pain Management A Step-by-Step Atlas / Diwan, Deer
- Deer's Treatment of Pain An Illustrated Guide for Practitioners / Deer, Pope, Lamer, Provenzano

Notes/Handbook

lecture slides on moodle

Moodle Link

• https://go.epfl.ch/NX-422

Neural interfaces Page 3 / 3