EE-427 Analog IC design (for MNIS)

Koukab Ac	lik			
Cursus	Sem.	Туре	l anguage of	English
MNIS	MA3	Obl.	Language of teaching Credits Session Semester Exam Workload Weeks	English 3 Winter Fall Written 90h 14
			Hours Courses Exercises Number of positions	3 weekly 2 weekly 1 weekly

Summary

This course deals with the analysis, design, and optimization of CMOS analog circuits, emphasizing low-power solutions required in a broad range of applications (e.g., IoT, wearables, Biosensors ...). Some examples of mixed-signal design are also addressed.

Content

- Introduction: Low-Power AMS design and application (IoT, Wearable, Sensors, Healthcare, â#Š)
- MOS Transistor: Modelling, Operation, and trade-offs
- Voltage references and regulators
 - Supply and temperature-independent biasing
 - Low-Voltage solution

• Operational-Amplifiers:

- Applications (Amplification, Filtering, and Regulation)
- Frequency analysis and Stability
- Noise, Offset, and Mismatch
- Filly Differential and common mode feedback
- LV solution: Rail to Rail Amp.
- Mixed-Signal Design examples:
 - Digital calibration of analog circuits
 - Comparators
 - Practical aspects in MS-SOC

Keywords

• MOS transistor, Modelling, Analog Design, Current Mirrors, Voltage references, Regulators, Amplifiers, Stability, low-power, Low-noise, Low Voltage, digital calibration

Learning Prerequisites

Recommended courses

- Analog Design Essentials / Sansen
- CMOS Circuit Design, Layout, and Simulation / Baker
- Design of Analog CMOS Integrated Circuits / Razavi

Resources

Moodle Link

• https://go.epfl.ch/EE-427