

2 weekly

2 weekly

Lecture Exercises

Number of positions

MATH-403

Low-rank approximation techniques

		_		
Cursus	Sem.	Туре	l anguage of	English
Computational science and Engineering	MA1, MA3	Opt.	teaching Credits Session Semester Exam	English
Ingmath	MA1, MA3	Opt.		5 Winter Fall Oral
Mathématicien	MA1, MA3	Opt.		
Quantum Science and Engineering	MA1, MA3	Opt.		
Statistics	MA1, MA3	MA1, MA3 Opt. Workload Weeks	Workload	150h 14
			Hours	4 weekly

Remark

pas donné en 2023-24

Summary

Content

- Theoretical background of low-rank matrix approximation
- Classical algorithms for low-rank approximation
- Randomized low-rank approximation
- Low-rank approximation by deterministic column/row selection
- · Low-rank approximation by randomized sampling
- Basic introduction to tensors
- Tensor rank, CP, Tucker, and TT decompositions of tensors
- Alternating least-squares algorithms
- Optional: Riemannian optimization on low-rank matrix and tensor manifolds
- Optional: Dynamical low-rank approximation
- Applications of low-rank approximation in data analysis, model and dimensionality reduction

Resources

Moodle Link

• https://go.epfl.ch/MATH-403