

MATH-444 **Multivariate statistics**

Panaretos Victor		
	Sem.	Type
	MA2, MA4	Opt.
	MA2	Opt.
	MA2, MA4	Opt.
	Panaretos Victor	Sem. MA2, MA4 MA2

Language of teaching	English
Credits	5
Session	Summer
Semester	Spring
Exam	Written
Workload	150h
Weeks	14
Hours	4 weekly
Lecture	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence structure. This course offers a broad introduction to its concepts, methods & theory

Content

- · Random vectors and random matrices.
- Product moments and covariance Matrices.
- The multivariate Gaussian and elliptical distributions.
- Limit theorems and concentration of measure.
- Coupling and copulas, measures of dependence
- PCA, CCA, and LDA.
- Covariance estimation and hypothesis testing.
- Nonparametric and semiparametric estimation.
- Gaussian graphical models and conditional independence
- Multivariate statistics in high dimensions.
- Introduction to functional data analysis.

Learning Prerequisites

Required courses

A solid introduction to probability (e.g. MATH-230) and statistics (e.g. MATH-240). Basic knowlege of linear models (e.g. MATH-341) is useful but not necessary.

Learning Outcomes

By the end of the course, the student must be able to:

- Manipulate the multivariate normal distribution and some of its extensions.
- Expound the main concepts in coupling and copulas
- Expound and apply the main dependence measures.
- Apply a canonical correlation analysis to some concrete cases.
- Apply a principal component analysis to some concrete cases.
- Perform basic multivariate hypothesis tests.

Multivariate statistics Page 1/2

- Demonstrate a basic understanding of linear discriminant analysis.
- Demonstrate a basic understanding of graphical models theory.
- Demonstrate his/her understanding of the main mathematical concepts/proofs of the course.
- Justify the use of a method for a particular data set and objective

Teaching methods

Lecture ex cathedra using slides as well as the blackboard.

Assessment methods

Written examination.

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours No
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

• Theodore W. Anderson: Multivariate Analysis, Wiley

Ressources en bibliothèque

• Multivariate Analysis / Anderson

Notes/Handbook

The slides will be available on Moodle.

Moodle Link

• https://go.epfl.ch/MATH-444

Multivariate statistics Page 2 / 2