MATH-336 Randomization and causation

Stensrud Mats Julius				
Cursus	Sem.	Туре	l anguage of	English
Mathematics	BA6	Opt.	teaching	Linglish
Statistics	MA2, MA4	Obl.	Credits Session	5 Summer
			Semester Exam Workload Weeks Hours Lecture Exercises Number of positions	Spring Written 150h 14 4 weekly 2 weekly 2 weekly

Summary

This course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.

Content

- Experimental design
 - Randomisation
 - Matched pairs, block designs, (fractional) factorial designs and latin squares

• Defining a causal model

- Causal axioms
- Falsifiability
- Structural equations
- Causal directed acyclic graphs
- Single world intervention graphs
- Interpretation of causal parameters
 - Individual and average level effects
 - Mediation and path specific effects
 - Instrumental variables
 - Statistical inference: Estimands, estimators and estimates
 - Relation to classical statistical models
 - Doubly and multiply robust estimators

Keywords

Causality; Causal inference; Randomisation; Experimental design: Structural equation models; Causal Graphs; Estimands.

Learning Prerequisites

Required courses

The students are expected to know the basics of statistical theory and probability theory. The courses "probability" (Math-230), "statistics" (Math-240) and "linear models" (Math-341).

Recommended courses

Courses in regression models and statistical inference.

Important concepts to start the course

Likelihood theory and principles of statistical testing. Experience with R is an advantage, but is not required.

Learning Outcomes

By the end of the course, the student must be able to:

- Design experiments that can answer causal questions
- Describe the fundamental theory of causal models
- Critique assess causal assumptions and axioms.
- Distinguish between interpretation, identification and estimation
- Describe when and how causal effects can be identified and estimated from non-experimental data.
- Estimate causal parameters from observational data.

Transversal skills

- Demonstrate the capacity for critical thinking
- Communicate effectively, being understood, including across different languages and cultures.

Teaching methods

Classroom lectures, where I will use Beamer slides and the blackboard.

Assessment methods

Final written exam and continuous assessment.

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Resources

Bibliography

Teaching resources

- Hernan, M.A. and Robins, J.M., 2020. Causal inference: What if?
- Pearl, J., 2009. Causality. Cambridge university press.

Ressources en bibliothèque

- Causal Inference / Hernan & Robins
- Causality / Pearl

Moodle Link

• https://go.epfl.ch/MATH-336