Ξ	Ρ	۶	L

Number of positions

MATH-438	Statistical genetics				
	Goldstein Darlene				
Cursus		Sem.	Туре	Language of	English
Ingmath		MA2, MA4	Opt.	teaching	English
Mathématicien		MA2	Opt.	Credits	5
Statistics		MA2, MA4	Opt.	Session Semester	Summer Spring
				Exam	During the semester
				Workload	150h
				Weeks	14
				Hours	4 weekly
				Lecture	2 weekly
				Exercises	2 weekly

Summary

This course will cover the major topics in statistical genetics.

Content

Topics will include (as time permits):

Population genetics, Hardy-Weinberg Equilibrium Mendelian genetics Genetic epidemiology Gene mapping Pedigree analysis Segregation analysis Hidden Markov Model (HMM) Likelihoods on pedigrees - Elston-Steward and Lander-Green algorithms Lod scores and linkage analysis Linkage disequilibrium and association analysis Genome-wide association studies (GWAS)

Keywords

genetics, genetic epidemiology, pedigree analysis, gene mapping, pedigree analysis, HMM, linkage disequilibrium, R, GWAS

Learning Prerequisites

Required courses None, but a previous statistics course would be useful.

Recommended courses A previous statistics course would be useful.

Important concepts to start the course

A good understanding of likelihood would be useful, although we can cover this in the course if necessary.

Learning Outcomes

By the end of the course, the student must be able to:

- Choose appropriate analysis for a genetic problem
- Construct an appropriate genetic model
- Design a genetic study
- Compute necessary values for a genetic study
- Implement correct analysis methods
- Report results

Transversal skills

- Use a work methodology appropriate to the task.
- Write a scientific or technical report.
- Write a literature review which assesses the state of the art.
- Set objectives and design an action plan to reach those objectives.

Teaching methods

Lectures plus handwritten as well as computer exercises.

Expected student activities

Class and exercises attendance and participation as well as report writing. Some group work will also be assigned. Students are expected to participate in their learning by attending lectures and practical exercise sessions, posing questions, proposing topics of interest, peer reviewing of preliminary reports, and interacting with teaching staff regarding their understanding of course material.

Assessment methods

Assignments based on group exercises and an individual report on a genetic study.

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography To be provided during the course. Pre-recorded lectures (videos) will also be provided.

Moodle Link

• https://go.epfl.ch/MATH-438