| MATH-470      | Martingales in financial mathematics |          |      |                     |                  |  |
|---------------|--------------------------------------|----------|------|---------------------|------------------|--|
|               | Schmutz Michael                      |          |      |                     |                  |  |
| Cursus        |                                      | Sem.     | Туре | Language of         | English          |  |
| Ingmath       |                                      | MA2, MA4 | Opt. | teaching            |                  |  |
| Mathématicien |                                      | MA2      | Opt. | Credits             | 5                |  |
| Statistics    |                                      | MA2, MA4 | Opt. | Session<br>Semester | Summer<br>Spring |  |
|               |                                      |          |      | Exam                | Oral             |  |
|               |                                      |          |      | Workload            | 150h             |  |
|               |                                      |          |      | Weeks               | 14               |  |
|               |                                      |          |      | Hours               | 4 weekly         |  |
|               |                                      |          |      | Courses             | 2 weekly         |  |

# Summary

The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mathematics. Moreover, the concepts of complete and incomplete markets are discussed.

#### Content

- Discrete time models and the Fundamental Theorem of Asset Pricing
  - Fundamental results
  - Binomial- and trinomial model
  - The Snell envelope, optimal stopping, and American options
- Geometric Brownian motion and the Black-Scholes model
  - Option pricing and hedging
  - Exotic options
- On the theory of (no-)arbitrage in continuous time
- Selected topics on
  - Local- and stochastic volatility models
  - Stochastic interest rates
  - Lévy driven models
  - New trends in financial mathematics
  - Deep hedging

#### Keywords

martingales, financial mathematics, theory of (no-)arbitrage

**Learning Prerequisites** 

Recommended courses Stochastic calculation

Important concepts to start the course



2 weekly

Exercises Number of positions

#### Stochastic calculation

#### Learning Outcomes

By the end of the course, the student must be able to:

- Explore in detail the use of martingales in financial mathematics.
- Prove a criteria for absence of arbitrage in a model based on a finite probability space and state an analogous general result.
- Prove a criteria for completeness of a market model based on a finite probability space and state an analogous general result.
- Explain the difference and the resulting consequences between claims and American options.
- Derive prices for some financial derivatives based on several different models.
- Derive different hedging strategies for some financial derivatives based on several different models.
- Analyze the choice of asset price models according to different criteria.
- Optimize the calibration of chosen asset price models.

• Prove a criteria for completeness of a viable market modeled based on a finite probability space and state an analogous general result.

#### Assessment methods

Exam oral

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

### Supervision

| Office hours | Yes                               |
|--------------|-----------------------------------|
| Assistants   | No                                |
| Forum        | No                                |
| Others       | Office hours by prior arrangement |

#### Resources

**Bibliography** 

- Lamberton, D. and Lapeyre, B. (2008), Introduction to Stochastic Calculus Applied to Finance, Second Edition, Chapman and Hall, London.
- Shiryaev, A.N. (1999), Essentials of Stochastic Finance: Facts, Models, Theory, World Scientific Publishing, Singapore.
- Barndorff-Nielsen, O.E. and Shiryaev, A.N. (2015), Change of Time and Change of Measure, Second Edition, World Scientific Publishing, Singapore.
- Eberlein, E. and Kallsen, J. (2019), Mathematical Finance, Springer Finance, Cham.
- Jarrow, R.A. (2021), Continuous-Time Asset Pricing Theory, Second Edition, Springer Finance, Cham.

#### Ressources en bibliothèque

- Introduction to Stochastic Calculus Applied to Finance / Lamberton
- Essentials of Stochastic Finance / Shiryaev
- Continuous-Time Asset Pricing Theory / Jarrow
- Mathematical Finance / Eberlein & Kallsen
- Change of Time and Change of Measure / Barndorff-Nielsen

## **Moodle Link**

• https://go.epfl.ch/MATH-470