

Goldstein Darlene				
Cursus	Sem.	Туре	Language of	English
Computer science	MA2, MA4	Opt.	teaching	Englion
Cybersecurity	MA2, MA4	Opt.	Credits	5 Summor
Data Science	MA2, MA4	Opt.	Session Semester	Summer Spring
Data science minor	E	Opt.	Exam	During the
Ingmath	MA2, MA4	Opt.	Workload	semester 150h
Life Sciences Engineering	MA2, MA4	Opt.	Weeks	14
Mathématicien	MA2	Opt.	Hours Lecture	4 weekly 2 weekly
Neuro-X minor	E	Opt.	Exercises	2 weekly 2 weekly
Neuro-X	MA2, MA4	Opt.	Number of positions	
SC master EPFL	MA2, MA4	Opt.	positions	
Statistics	MA2, MA4	Opt.		

Summary

This course covers topics in applied biostatistics, with an emphasis on practical aspects of data analysis using R statistical software. Topics include types of studies and their design and analysis, high dimensional data analysis (genetic/genomic) and other topics as time and interest permit.

Content

Types of studies Design and analysis of studies R statistical software Reproducible research techniques and tools Report writing Exploratory data analysis Liniear modeling (regression, anova) Generalized linear modeling (logistic, Poission) Survival analysis Discrete data analysis Meta-analysis High dimensional data analysis (genetics/genomics applications) Additional topics as time and interest permit

Keywords

Data analysis, reproducible research, statistical methods, R, biostatistical data analysis, statistical data analysis

Learning Prerequisites

Required courses

This course will be very difficult for students with no previous course or experience with statistics. Previous experience with R is neither assumed nor required.

Recommended courses Undergraduate statistics course

Important concepts to start the course It is useful to review statistical hypothesis testing.

By the end of the course, the student must be able to:

- · Synthesize analysis into a written report
- Report plan of analysis and results obtained
- Justify analysis plan
- Plan analysis for a given dataset
- Interpret analysis results
- · Analyze various types of biostatistical data

Transversal skills

- Write a scientific or technical report.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Take feedback (critique) and respond in an appropriate manner.
- Use a work methodology appropriate to the task.

Teaching methods

Lectures and practical exercises using R. Typically, each week covers an analysis method in the lecture and then the corresponding exercise session consists of an R practical showing how to implement the methods using R. In each practical, students use R to carry out analyses of the relevant data type for that week.

Expected student activities

Students are expected to participate in their learning by attending lectures and practical exercise sessions, posing questions, proposing topics of interest, peer reviewing of preliminary reports, and interacting with teaching staff regarding their understanding of course material. In addition, there will be a number of short activities in class aimed at improving English for report writing.

Assessment methods

Evaluation is based on written reports of projects analyzing biostatistical data.

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography To be provided during the course. Pre-recorded lectures (videos) will also be provided.

Moodle Link

https://go.epfl.ch/MATH-493