

CS-526 Learning theory

B 4		B 1		
N/I:	acris	N	100	20
IVIC	aci io	1.7	IUU	ıaə

Cursus	Sem.	Type
Computer science	MA2, MA4	Opt.
Cybersecurity	MA2, MA4	Opt.
Data Science	MA2, MA4	Opt.
SC master EPFL	MA2, MA4	Opt.
Statistics	MA2, MA4	Opt.

Language of teaching	English		
Credits	6		
Session	Summer		
Semester	Spring		
Exam	Written		
Workload	180h		
Weeks	14		
Hours	4 weekly		
Lecture	2 weekly		
Exercises	2 weekly		
Number of			
positions			

Summary

Machine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.

Content

- Basics: statistical learning framework, Probably Approximately Correct (PAC) learning, learning with a finite number of classes, Vapnik-Chervonenkis (VC) dimension, non-uniform learnability, complexity of learing.
- Neural Nets : representation power of neural nets.
- Stochastic gradient descent, modern aspects: mean field approach, neural tangent kernel.
- Matrix factorization, Tensor decompositions and factorization, Jenrich's tehorem, Alternating least squares, Tucker decompositions.
- · Learning mixture models, topic modeling.

Learning Prerequisites

Recommended courses

- Analysis I, II, III
- Linear Algebra
- Machine learning
- Probability
- Algorithms (CS-250)

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the framework of PAC learning
- Explain the importance basic concepts such as VC dimension and non-uniform learnability
- Describe basic facts about representation of functions by neural networks
- Describe recent results on specific topics e.g., graphical mdoel learning, matrix and tensor factorization, learning mixture models

Teaching methods

Learning theory Page 1 / 2

- Lectures
- Exercises

Expected student activities

- Attend lectures
- Attend exercises sessions and do the homework

Assessment methods

Final exam and graded homeworks

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Others Course website

Resources

Moodle Link

• https://go.epfl.ch/CS-526

Learning theory Page 2 / 2