

CS-526	Learning theory				
	Macris Nicolas				
Cursus		Sem.	Type	Language of	English
Computer science		MA2, MA4	Opt.	teaching Credits Session Semester Exam	Liigiisii
Cybersecurity		MA2, MA4	Opt.		6 Summer Spring Written
Data Science		MA2, MA4	Opt.		
SC master EPFL		MA2, MA4	Opt.		
Statistics		MA2, MA4	Opt.	Workload Weeks	180h 14
				Hours Lecture Exercises Number of positions	4 weekly 2 weekly 2 weekly

Summary

Machine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.

Content

- Basics: statistical learning framework, Probably Approximately Correct (PAC) learning, learning with a finite number of classes, Vapnik-Chervonenkis (VC) dimension, non-uniform learnability, complexity of learning.
- Neural Nets : representation power of neural nets.
- Stochastic gradient descent, modern aspects: mean field approach, neural tangent kernel.
- Matrix factorization, Tensor decompositions and factorization, Jenrich's tehorem, Alternating least squares, Tucker decompositions.
- · Learning mixture models, topic modeling.

Learning Prerequisites

Recommended courses

- Analysis I, II, III
- Linear Algebra
- Machine learning
- Probability
- Algorithms (CS-250)

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the framework of PAC learning
- Explain the importance basic concepts such as VC dimension and non-uniform learnability
- Describe basic facts about representation of functions by neural networks
- Describe recent results on specific topics e.g., graphical mdoel learning, matrix and tensor factorization, learning mixture models

Teaching methods

Learning theory Page 1 / 2

- Lectures
- Exercises

Expected student activities

- Attend lectures
- Attend exercises sessions and do the homework

Assessment methods

Final exam and graded homeworks

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Others Course website

Resources

Moodle Link

• https://go.epfl.ch/CS-526

Learning theory Page 2 / 2