

BIO-463	Genomics and b	Genomics and bioinformatics Bitbol Anne-Florence, Luisier Raphaelle, Rougemont Jacques				
	Bitbol Anne-Florence					
Cursus		Sem.	Туре	Language of	English	
Life Sciences Engineering		MA2, MA4	Obl.	teaching Credits Session Semester	LIIGIISII	
Minor in life sciences engineering		E	Opt.		4 Summer Spring	
Statistics		MA2, MA4	Opt.			
Systems Engineering minor		E	Opt. Exa	Exam	During the semester	
				Workload	120h	
				Weeks	14	
				Hours	4 weekly	
				Lecture	2 weekly	
				Exercises	2 weekly	
				Number of positions		

Summary

This course covers various data analysis approaches associated with applications of DNA sequencing technologies, from genome sequencing to quantifying gene expression, transcription factor binding and chromosome conformation.

Content

- · Genome sequencing and assembly
- Genome annotation, gene prediction
- Hidden Markov Models
- Comparative genomics
- Phylogenetic trees
- Models of molecular evolution
- Transcription
- Gene expression profiling
- Gene regulation
- Chromosome conformation

Learning Prerequisites

Recommended courses

Molecular biology, genetics, linear algebra, ordinary differential equations, basic statistics, computer programming

Important concepts to start the course DNA and RNA, replication, transcription and translation.

Learning Outcomes

By the end of the course, the student must be able to:

- Choose a method or algorithm to analyse different kinds of genomic data
- Design an analysis strategy to interpret complex, heterogenous genomic data
- Assess / Evaluate a publication based on genomic data

Transversal skills

- Access and evaluate appropriate sources of information.
- Summarize an article or a technical report.
- Communicate effectively with professionals from other disciplines.
- Use both general and domain specific IT resources and tools

Teaching methods

2 hours lectures (theoretical concepts) followed by 2 hours practical exercises (review the theory and practice with bioinformatics tools and data)

Lecture notes, slides and exercises provided on Moodle.

Expected student activities

Following the lectures, completing exercises, performing data analyses and implementing the relevant algorithms

Assessment methods

The evaluation is based on a 2-3 evaluated practicals throughout the semester.

Resources

Bibliography

- A primer of genome science / Greg Gibson, Spencer V. Muse
- Bioinformatics: sequence and genome analysis / David W. Mount
- Bioinformatics and functional genomics / Jonathan Pevsner
- Biological sequence analysis: probabilistic models of proteins and nucleic acids / Richard Durbin
- Physical Biology of the Cell / Rob Phillips et al.

Ressources en bibliothèque

- Biological sequence analysis
- Bioinformatics / David W.Mount
- A primer of genome science / Gibson
- Bioinformatics and functional genomics
- Physical Biology of the Cell / Rob Phillips et al.

Moodle Link

• https://go.epfl.ch/BIO-463