

Number of positions

# MATH-449 Biostatistics

Stensrud Mats Julius

| Cursus                            | Sem.     | Туре | Language of                                                                             | English                                                           |
|-----------------------------------|----------|------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Civil & Environmental Engineering |          | Opt. | teaching<br>Credits<br>Session<br>Semester<br>Exam<br>Workload<br>Weeks<br><b>Hours</b> | English                                                           |
| Computational biology minor       | Е        | Opt. |                                                                                         | 5<br>Summer<br>Spring<br>Written<br>150h<br>14<br><b>4 weekly</b> |
| Ingmath                           | MA2, MA4 | Opt. |                                                                                         |                                                                   |
| Life Sciences Engineering         | MA2, MA4 | Opt. |                                                                                         |                                                                   |
| Mathématicien                     | MA2      | Opt. |                                                                                         |                                                                   |
| Statistics                        | MA2, MA4 | Opt. |                                                                                         |                                                                   |
|                                   |          |      | Lecture                                                                                 | 2 weekly                                                          |
|                                   |          |      | Exercises                                                                               | 2 weekly                                                          |

### Summary

This course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that are functions of time. While motivated by real-life problems, some of the material will be abstract

### Content

- Analysis of time-to-events (survival analysis / failure time analysis)
  - Censoring
  - Likelihood functions for censored data
  - Martingales
  - Identification of parameters with a clear interpretation
  - Non-parametric and semi-parametric estimators
  - Discrete vs continuous time
- Longitudinal data analysis
  - Parametric regression models
  - Semi-parametric models
- Interpretation and evaluation of statistical parameters
  - Description, Prediction and Causal inference
  - Biases
  - · Sensitivity analyses
- Precision medicine
  - Identification and estimation of optimal regimes
  - Optimal time-varying treatment regimes

# Keywords

Biostatistics; statistical inference; survival analysis; longitudinal data; research synthesis



# **Learning Prerequisites**

## **Required courses**

The students are expected to have taken introductory courses in statistical theory, probability theory and regression modeling.

Recommended courses Undergraduate courses in statistics.

**Important concepts to start the course** Likelihood theory, statistical testing. Experience with R is an advantage, but is not required.

# Learning Outcomes

By the end of the course, the student must be able to:

- Identify statistical methods that are suitable for answering a given scientific problem.
- Justify why a statistical method is applied to given problem.
- Apply methods that have been taught in the course.
- Critique evaluate published studies and methodologies.

# **Transversal skills**

- Communicate effectively with professionals from other disciplines.
- Access and evaluate appropriate sources of information.
- Demonstrate the capacity for critical thinking

### **Teaching methods**

Classroom lectures, where I will use Beamer slides and the blackboard. Exercises and take-home projects that will require programing in R.

### **Assessment methods**

Final written exam and continuous assessment. Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

#### **Supervision**

Office hours No Assistants Yes Forum No

## Resources

Virtual desktop infrastructure (VDI) No

### **Bibliography**

### **Teaching resources**

• Aalen, O., Borgan, O. and Gjessing, H., 2008. Survival and event history analysis: a process point of



# view. Springer

• Andersen, P.K., Borgan, O., Gill, R.D. and Keiding, N., 2012. Statistical models based on counting processes. Springer

### Ressources en bibliothèque

- Andersen Statistical models
- Aalen survival and event history

# **Moodle Link**

• https://go.epfl.ch/MATH-449