Vagnoni Elena				
Cursus	Sem.	Туре	Language of	English
Energy Science and Technology	MA1, MA3	Obl.	teaching	LIIGIISII
Energy minor	Н	Opt.	Credits Session Semester Exam	4 Winter Fall Written
Mechanical engineering minor	Н	Opt.		
Mechanical engineering	MA1, MA3	Opt.		
Mechanics		Opt.	Workload Weeks	120h 14
Nuclear engineering	MA1	Opt.	Hours	4 weekly
			Lecture	3 weekly
			Exercises	1 weekly
			Number of	

Summary

Master lecture on Hydraulic Turbomachines: impulse and reaction turbines, pumps and pump-turbines.

Content

- Turbomachine equations, mechanical power balance in a hydraulic machines, moment of momentum balance applied to the runner/impeller, generalized Euler equation.
- Hydraulic characteristic of a reaction turbine, a Pelton turbine and a pump, losses and efficiencies of a turbomachine, real hydraulic characteristics.
- Similtude laws, non dimensional coefficients, reduced scale model testing, scale effects.
- Cavitation, hydraulic machine setting, operating range, adaptation to the piping system, operating stability, start stop transient operation, runaway.
- Reaction turbine design: general procedure, general project layout, design of a Francis runner, design of the spiral casing and the distributor, draft tube role, CFD validation of the design, design fix, reduced scale model experimental validation.
- Pelton turbine design: general procedure, project layout, injector design, bucket design, mechanical problems.
- Centrifugal pump design: general architecture, energetic loss model in the diffuser and/or the volute, volute design, operating stability.

Learning Prerequisites

Recommended courses Incompressible Fluids Mechanics Introduction to turbomachines

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate the operating point of a hydraulic turbomachine
- Specify a type of hydraulic turbine
- Sketch the layout of a hydraulic turbomachine
- Select appropriately the dimensions of a hydraulic turbomachine

Transversal skills

positions

- Use a work methodology appropriate to the task.
- Communicate effectively with professionals from other disciplines.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

ex cathedra lectures with working case studies

Expected student activities

attendance at lectures completing exercises and reading written material

Assessment methods

written exam

Resources

Bibliography

P. HENRY: Turbomachines hydrauliques - Choix illustré de réalisation marquantes, PPUR, Lausanne, 1992.
Franc, Avellan et al., Cavitation, EDP Grenoble, 1994
Handout and Scientifc Litterature from LMH, Industry, International Association

Ressources en bibliothèque

- Cavitation / Franc
- Turbomachines hydrauliques / Henry

Notes/Handbook slides handout Handbook

Moodle Link

• https://go.epfl.ch/ME-453

Prerequisite for Cavitation, Hydroacoustic, Master Project