

PHYS-443 Physics of nuclear reactors

Hursin Mathieu, Pautz Andreas

Cursus	Sem.	Type
Nuclear engineering	MA1	Obl.

Language of English teaching Credits Winter Session Fall Semester Exam Oral Workload 180h Weeks 14 Hours 6 weekly 4 weekly Courses Exercises 2 weekly Number of positions

Summary

In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain reaction.

Content

• Brief review of nuclear physics

- Historical: Constitution of the nucleus and discovery of the neutron
- Nuclear reactions and radioactivity
- Cross sections
- Differences between fusion and fission.

Nuclear fission

- Characteristics Nuclear fuel Introductory elements of neutronics.
- Fissile and fertile materials.

• Element of reactor design

- flux and heat source distribution; properties of different coolants and technological consequences

LWR reactors technology

- overview of the functional scheme of PWR and BWRs; fuel elements; compensation of excess reactivity in PWRs and BWRs (boron, etc.)

• Neutron diffusion and slowing down

- Monoenergetic neutrons Angular and scalar flux
- Diffusion theory as simplified case of transport theory Neutron slowing down through elastic scattering.

• Multiplying media (reactors)

- Multiplication factors Criticality condition in simple cases.
- Thermal reactors Neutron spectra Multizone reactors Multigroup theory and general criticality condition Heterogeneous reactors.

Reactor kinetics

- Point reactor model: prompt and delayed transients - Practical applications.

· Reactivity variations and control

- Short, medium and long term reactivity changes. Different means of control.

· Advanced reactor designs

- Breeding and transmutation; introduction into Gen-IV reactors

Learning Outcomes

By the end of the course, the student must be able to:

- Elaborate on neutron diffusion equation
- Formulate approximations to solving the diffusion equation for simple systems
- Classify nuclear reaction cross sections
- Develop for a nuclear reactor

Transversal skills

- Access and evaluate appropriate sources of information.
- · Collect data.
- Use both general and domain specific IT resources and tools
- Write a scientific or technical report.

Teaching methods

Lectures, numerical exercises

Assessment methods

oral exam (50%) group project (50%)

Resources

Moodle Link

• https://go.epfl.ch/PHYS-443