00 20.	Theory of computation				
	Göös Mika				
Cursus		Sem.	Туре	Language of teaching Credits	English
Communication systems		BA4	Obl.		English
Computer science		BA6	Obl.		6
HES - IC		E	Opt.	Session Semester	Summer
				Exam	Written
				Workload	180h
				Weeks	14
				Hours	4 weekly
				Lecture	2 weekly
				Exercises	2 weekly
				Number of	

CS-251 Theory of computation

Summary

This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematically precise understanding of their fundamental capabilities and limitations.

Content

- Basic models of computation (finite automata, Turing machine)
- · Elements of computability theory (undecidability, reducibility)
- Introduction to time complexity theory (P, NP and theory of NP-completeness)

Keywords

theory of computation, Turing machines, P vs. NP problem, complexity theory, computability theory, finite automata, NP-completeness

Learning Prerequisites

Required courses CS-101 Advanced information, computation, communication I CS-250 Algorithms

Learning Outcomes

By the end of the course, the student must be able to:

- Perform a rigorous study of performance of an algorithm or a protocol
- Classify computational difficulty of a decision problem
- Define the notion of NP-completeness
- Analyze various computation models
- Design a reduction between two computational problems
- Characterize different complexity classes
- Explain P vs. NP problem

Transversal skills

positions

- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Ex cathedra with exercises

Assessment methods

Written exam and continuous control

Resources

Moodle Link

• https://go.epfl.ch/CS-251