COM-302 Principles of digital communications

Telatar Emre				
Cursus	Sem.	Туре	Lan	
Communication systems minor	Е	Opt.	teac Crea Ses Sem	
Communication systems	BA6	Obl.		
Computer science	BA6	Opt.		
HES - IC	E	Opt.	Exa	
			VVOr	

Language of teaching	English
Credits	6
Session	Summer
Semester	Spring
Exam	Written
Workload	180h
Weeks	14
Hours	6 weekly
Lecture	4 weekly
Exercises	2 weekly
Number of	
positions	

Summary

This course is on the foundations of digital communication. The focus is on the transmission problem (rather than being on source coding).

Content

Optimal receiver for vector channels Optimal receiver for waveform (AWGN) channels Various signaling schemes and their performance Efficient signaling via finite-state machines Efficient decoding via Viterbi algorithm Communicating over bandlimited AWGN channels Nyquist Criterion Communicating over passband AWGN channels

Keywords

Detection, estimation, hypothesis testing, Nyquist, bandwidth, error probability, coding, decoding, baseband, passband, AM, QAM, PSK.

Learning Prerequisites

Required courses Signal processing for communications and Modèles stochastiques pour les communications

Important concepts to start the course Linear algebra, probability.

Learning Outcomes

By the end of the course, the student must be able to:

- Estimate the error probability of a communication link
- Design a "physical layer" communication link
- Implement a prototype of a "physical layer" transmitter/receiver via Matlab

Teaching methods

Ex cathedra + exercises + project. Lots of reading at home and exercises in class.

With continuous control

Resources

Moodle Link

• https://go.epfl.ch/COM-302

Prerequisite for

Advanced Digital Communications Software-Defined Radio: A Hands-On Course