MICRO-561 Biomicroscopy I | / litury i latiou | Αl | ltug | Ha | itice | |-------------------|----|------|----|-------| |-------------------|----|------|----|-------| | Cursus | Sem. | Type | |---|----------|------| | Biomedical technologies minor | Н | Opt. | | Computational Neurosciences minor | Н | Opt. | | Electrical and Electronical Engineering | MA1, MA3 | Opt. | | Life Sciences Engineering | MA1, MA3 | Opt. | | Microtechnics | MA1, MA3 | Opt. | | Minor in Imaging | Н | Opt. | | Minor in life sciences engineering | Н | Opt. | | Neuro-X minor | Н | Opt. | | Neuro-X | MA1, MA3 | Opt. | | Photonics minor | Н | Opt. | | Photonics | | Opt. | | Language of teaching | English | |----------------------|----------| | Credits | 3 | | Session | Winter | | Semester | Fall | | Exam | Written | | Workload | 90h | | Weeks | 14 | | Hours | 3 weekly | | Lecture | 3 weekly | | Number of positions | | ## Summary Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used biomicrocopy methods such as widefield and fluorescence. #### Content Geometrical and matrix (ABCD) optics, wave and Fourier optics, point-spread function (PSF), resolution and contrast, microscope elements (objectivs, eyepiece, filters, illuminations, detectors), fluorescence microscopy, and preparation of biological samples for microscopy. ## Keywords Optical microscopy, fluorescence, wide field microscopy. ## **Learning Prerequisites** ## Required courses Analysis IV, Linear algebra, General physics III/IV. #### Important concepts to start the course Basic matrix calculations, Fourier transformation, electromagnetic waves, refraction and reflection. ## **Learning Outcomes** By the end of the course, the student must be able to: - Sketch basic optical systems. - Sketch wide field and fluorescence microscopes. - Estimate the resolution of imaging systems. - Propose a suitable microscopy configuration for imaging a sample. - Characterize the basic elements of a microscope #### Transversal skills Biomicroscopy I Page 1 / 3 • Communicate effectively with professionals from other disciplines. ### **Teaching methods** Lecturing with exercises. #### **Expected student activities** Following the lecturing and solving the exercises regularly is necessary for mastering the course contents. The solutions of the exercises are distributed at the next lecture. The student is invited to find his/her own solutions and to discuss them with the assistants. #### **Assessment methods** Written exam during the winter exam session ## Supervision Office hours No Assistants Yes Forum Yes Others Possible to take dates. ## Resources #### **Bibliography** - ¿ Fundamentals of Light Microscopy and Electronic Imaging, 2nd Edition, by Murphy and Davidson. Wiley-Blackwell (2013). - ¿ Fundamentals of Photonics, 2nd Edition, by Saleh and Teich. Wiley (2007). - ¿ Geometrical and matrix optics: José-Philippe Pérez, Optique: fondements et applications (2004). - ¿ Eugene Hecht, Optics (2002). - ¿ Miles V. Klein and Thomas E. Furtak, Optics (1986). - Optique : fondements et applications / Pérez - Optics / Hecht - Fundamentals of Photonics / Saleh - Principles of optics: electromagnetic theory of propagation, interference and diffraction of light / Born - Fundamentals of Light Microscopy and Electronic Imaging / Murphy - Optics / Klein ## Notes/Handbook Script covering geometrical and matrix optics, Fourier optics, microscopy and fluorescence. Script chapters and course slides are published on Moodle. ## Websites - http://www.olympusmicro.com/ - http://zeiss-campus.magnet.fsu.edu/tutorials/index.html - http://moodle.epfl.ch/enrol/index.php?id=1341 ## **Moodle Link** • https://go.epfl.ch/MICRO-561 #### Prerequisite for Biomicroscopy II Biomicroscopy I Page 2 / 3 Biomicroscopy I Page 3 / 3