positions

NX-422 Neural interfaces

Lacour Stéphanie, Shoaran Mahsa

Cursus	Sem.	Туре	Language of	English
Biomedical technologies minor	Н	Opt.	teaching Credits	English
Electrical and Electronical Engineering	MA1, MA3	Opt.		6 Winter
Life Sciences Engineering	MA1, MA3	Opt.	Semester	Fall
Microtechnics	MA1, MA3	Opt.	Exam	During the
Neuro-X minor	Н	Opt.	Workload	180h
Neuro-X	MA1, MA3	Opt.	Weeks	14
Robotics	MA1, MA3	Opt.	Hours Lecture	6 weekly 4 weekly
			Number of	∠ weekly

Summary

Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communication), reviews current and upcoming materials and technological solutions for implantable & wearable NI

Content

Introduction and key concepts.

- The Human Body. The Nervous System.
- Scales. Biomaterials. Biomechanics.
- Functions. Electrophysiology.
- Neural Recording.
- Communication. Standards.

Case study 1. The Cochlear Implant.

- Electrodes and leads: materials, manufacturing, electrochemical impedance spectrocopy
- Function: neuromodulation: Stimulation parameters.
- Implantable neural system: Packaging.

Case study 2. Brain Computer Interfaces

- · Invasive and wearable technologies.
- Electrodes. Scale and density.
- Metallic (macroscopic) electrodes.
- Silicon-based (micromachined) electrodes.
- Flexible probes
- Multimodal probes
- Biointegration
- Implantable electronics
- Miniaturized CMOS-based interfaces
- Neural amplifiers
- · Digitization and compression methods and circuits
- Neurostimulation methods and circuits
- · Classification of neural data

- BCI systems
- Spike sorting, decoding and control
- Wireless power and data transmission

Keywords

Electrodes Microfabrication Biomaterials Implantable electronics Circuit design Low-power electronics Machine learning Telemetry Neural Engineering

Learning Prerequisites

Recommended courses

Sensors MICRO-330, Microfabrication MICRO-301, MICRO-331 Materials MSE-207, MSE-208, BIO315, Analog IC design EE-320 Background in neuroscience BIO311 Background in electronics

Important concepts to start the course Basic concepts in electronics

Learning Outcomes

By the end of the course, the student must be able to:

- Design
- Develop
- Sketch
- Integrate
- Propose
- Plan

Transversal skills

- Communicate effectively, being understood, including across different languages and cultures.
- Keep appropriate documentation for group meetings.
- Give feedback (critique) in an appropriate fashion.
- Make an oral presentation.
- Write a scientific or technical report.

Teaching methods

Ex cathedra lectures In-class Exercices (once a month)

Expected student activities

attend weekly lectures read proposed references develop a team project

Assessment methods

In-class assessment (30%): 3 on-line but in-class quizzes during the semester Team project (70%):

- project report (50%)
- team oral presentation (40%)
- engagement across the semester (10%)

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography Books: Neuroprosthetics: Theory and Practice (Second Edition) K.Horch, D. Kipke Brain computer interface technologies Claude Clément

Ressources en bibliothèque

- Brain computer interface technologies / Claude Clément
- Neuroprosthetics: theory and practice / Horch, Kipke. 2nd edition

Notes/Handbook lecture slides on moodle

Moodle Link

• https://go.epfl.ch/NX-422