Cursus	Sem.	Type
Biocomputing minor | E | Opt.
Computational Neurosciences minor | E | Opt.
Computational science and Engineering | MA2, MA4 | Opt.
Computer science | MA2, MA4 | Opt.
Cybersecurity | MA2, MA4 | Opt.
Life Sciences Engineering | MA2, MA4 | Opt.
Mechanical engineering | MA2, MA4 | Opt.
Neuro-X | MA2, MA4 | Opt.
Robotics, Control and Intelligent Systems | | Opt.
SC master EPFL | MA2, MA4 | Opt.

Remark
Cours biennal, pas donné en 2023-24

Summary
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the qualitative analysis of nonlinear systems, both in discrete-time and continuous-time.

Content
- **Introduction**: Dynamics of linear and non-linear systems. Definitions; Unicity of a solution; Limit Sets, Attractors.
- **Linear Systems**: Solutions; Stability of autonomous systems, Geometrical analysis, connection with frequency domain analysis.
- The class is methodology-driven. It may present some limited examples of applications, but it is not application-driven.

Keywords

Learning Prerequisites
Required courses
- Linear algebra (MATH 111 or equivalent).
- Analysis I, II, III (MATH 101, 106, 203 or equivalent).
• Circuits & Systems II (EE 205 or equivalent) or a Systems & Signals class (MICRO 310/311 or equivalent).

Recommended courses
• A first-year Probability class, such as MATH-232, MATH-231, MATH-234(b), MATH-234(c), or equivalent.
• Analysis IV (MATH 207 or equivalent)

Important concepts to start the course
• Linear Algebra (vector spaces, matrix operations, including inversion and eigendecomposition).
• Calculus (linear ordinary differential equations; Fourier, Laplace and z-Transforms).
• Basic notions of topology.
• Basic notions of probability.

Learning Outcomes
By the end of the course, the student must be able to:
• Analyze a linear or nonlinear dynamical system
• Anticipate the asymptotic behavior of a dynamical system
• Assess / Evaluate the stability of a dynamical system
• Identify the type of solutions of a dynamical system

Teaching methods
• Lectures (blackboard), 2h per week
• Exercise session, 1h per week

Expected student activities
Exercises in class and at home (paper and pencil, and Matlab)

Assessment methods
1. Mid-term 20% (conditionally on the Covid situation allowing for it to be taken at EPFL).
2. Final exam 80%

Supervision
Office hours Yes
Assistants Yes
Forum Yes

Resources
Bibliography
Course notes; textbooks given as reference on the moodle page of the course.

Notes/Handbook
Course notes, exercises and solutions provided on the moodle page of the course.
Moodle Link

- https://go.epfl.ch/COM-502