

BIOENG-456 Controlling behavior in animals and robots

Ramdya Pavan P

Cursus	Sem.	Type
Life Sciences Engineering	MA2, MA4	Opt.
Neuro-X minor	Е	Opt.
Neuro-X	MA2, MA4	Opt.
Robotics	MA2, MA4	Opt.

Language of	English
teaching	
Credits	4
Withdrawal	Unauthorized
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	120h
Weeks	14
Hours	4 weekly
Lecture	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and computational exercises.

Content

During the first half of the course, each topic will be introduced by preparatory primary scientific literature readings that are expanded upon during lecture and followed by (i) a presentation and discussion of these papers by student groups and (ii) guided Python-based modeling exercises that are designed to test and consolidate knowledge. The last half of the course is a group mini-project working on analyzing new data. Lecture/presentation topics include:

â#¢ Defining behavior

â#¢ The body and behavior

â#¢ Taxis behaviors

â#¢ Neural networks

â#¢ Internal states

â#¢ Hierarchical control

Keywords

â#¢ behavior

â#¢ neuroscience

â#¢ neural networks

â#¢ flies

â#¢ robots

â#¢ embodiment

â#¢ sensing

â#¢ locomotion

â#¢ navigation

Learning Prerequisites

Required courses

Python programming

Recommended courses

Neuroscience

Important concepts to start the course

Neuroscience Robotics Programming

Learning Outcomes

By the end of the course, the student must be able to:

- Recall
- Draw
- Implement
- Hypothesize

Transversal skills

- Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.
- Give feedback (critique) in an appropriate fashion.
- Make an oral presentation.
- · Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Use both general and domain specific IT resources and tools
- Access and evaluate appropriate sources of information.
- Summarize an article or a technical report.

Teaching methods

For the first half of the semester:

2h lectures per week, including a lecture by the professor as well as an oral presentation and guided discussion of primary scientific literature by a student group.

2h exercises per week, including a guided programming-based simulation of behavioral control algorithms (problem solving, model building, project execution and presentation)

This first half of the course is consolidated and evaluated by a midterm exam.

For the second half of the semester: A group-based miniproject that is guided through lectures on data analysis and finalized through the submission of a Project Report and Presentation.

Expected student activities

Students are expected to attend lectures, actively engage in exercises, summarize and present a scientific study, participate in group discussions, and perform a miniproject in a group.

Assessment methods

Continued assessment during the semester.

Resources

Moodle Link

• https://go.epfl.ch/BIOENG-456