Sensors in medical instrumentation

Chételat Olivier Pierre, Ionescu Anisoara

Cursus	Sem.	Туре	Language of	English
Biomedical technologies minor	Е	Opt.	teaching	LIIGIISII
Electrical and Electronical Engineering	MA2, MA4	Opt.	Credits	3 Summor
Life Sciences Engineering	MA2, MA4	Opt.	Seession Semester Exam Workload Weeks Hours Lecture Exercises Number of positions	Spring Written 90h 14 3 weekly 2 weekly 1 weekly
Mechanical engineering	MA2, MA4	Opt.		
Microtechnics	MA2, MA4	Opt.		
Neuro-X minor	E	Opt.		
Neuro-X	MA2, MA4	Opt.		
Robotics, Control and Intelligent Systems		Opt.		
Robotics	MA2, MA4	Opt.		

Summary

EE-511

Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert physiological information to electrical signals. Medical devices for physiological signal monitoring.

Content

1. Electrode sensors

Action potentials

Nernst equation, Hodgkin-Huxley model, action potential, voltage clamp

• Biopotentials

ECG (electrocardiogram), EEG (electroencephalogram), ExG (other electrogram), ECGi (ECG imaging)

Bioimpedances

Impedance model, impedance plethysmography, impedance spectroscopy, EIT (electrical impedance tomography), PAP (pulmonary artery pressure)

Basic safety of ME equipment

Regulations, 60601-1, MOP, applied part and patient connections, leakage and auxiliary currents, defibrillator-proof

Electrodes

Electrode model, motion artefacts, noise, dry electrodes, potential and current electrodes

Metrology of biopotentials

EM interferences, shielding, neutral electrode, common mode, defibrillation and ESD protections

Metrology of bioimpedances

Bipolar and tetrapolar methods, bi-electrodes, AM, IQ demodulation, leakage, shielding

2. Optical sensors

Photo-plethysmography

PPG, oHRM, ambient light, volume clamp blood pressure, optical blood pressure, SpO2

• NIRS (near infrared spectroscopy)

Basic NIRS, differential NIRS

3. Resistive sensors

Thermistor and its biomedical applications; strain gage for the measurement of blood pressure; force and accelerations of the body

4. Inductive sensors

Simple and mutual inductance and its medical applications

5. Capacitive sensors

Respiratory flow measurement by the gradient of pressure

6. Piezoelectric sensors

Force platform, accelerometer, angular rate sensor for the measurement of tremors and body movements, ultrasound

2023-2024 COURSE BOOKLET

EPFL

transducer : measurement of pressure and flow rate

Keywords

Sensors, instrumentation, medical devices, physiological signals, electronic circuits, metrology, monitoring

Learning Prerequisites Required courses basic signal and control theory, basic electronics (Kirchhoff, OPA, INA)

Recommended courses systems, sensors, electronics

Important concepts to start the course basic electronics, basic physics

Learning Outcomes

By the end of the course, the student must be able to:

- Work out / Determine what sensors to choose and how to place them to measure a given physiologica signal.
- Work out / Determine what electronic circuits to use.
- Dimension the electronic circuit.
- Analyze the sources of noise.

Transversal skills

• Take account of the social and human dimensions of the engineering profession.

Teaching methods

Ex cathedra (including examples) with textbook and exercises

Expected student activities

read textbook, exercises, quizzes and problems

Assessment methods

three quizzes/problems sessions during semester (each worth 5%) final written exam (worth 85%)

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography Medical Instrumentation, application and design, Webster, 4th edition

Sensors in medical instrumentation

• Medical Instrumentation, application and design, Webster, 5th edition

Notes/Handbook Sensors in medical instrumentation (textbook) Slides

Moodle Link

• https://go.epfl.ch/EE-511