

CS-442 Computer vision

Fua Pascal		
Cursus	Sem.	Type
Communication systems minor	E	Opt.
Computer science minor	E	Opt.
Computer science	MA2, MA4	Opt.
Cybersecurity	MA2, MA4	Opt.
Data Science	MA2, MA4	Opt.
Data science minor	Е	Opt.
Digital Humanities	MA2, MA4	Opt.
Minor in Imaging	E	Opt.
Neuro-X minor	Е	Opt.
Neuro-X	MA2, MA4	Opt.
Robotics, Control and Intelligent Systems		Opt.
Robotics	MA2, MA4	Opt.
SC master EPFL	MA2, MA4	Opt.

Language of teaching	English
Credits	6
Session	Summer
Semester	Spring
Exam	Written
Workload	180h
Weeks	14
Hours	3 weekly
Lecture	2 weekly
Exercises	1 weekly
Number of positions	

Summary

Computer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors. We will focus on images acquired using digital cameras. We will introduce basic processing techniques and discuss their field of applicability.

Content

Introduction

- History of Computer Vision
- Human vs Machine Vision
- Image formation

Extracting 2D Features

- Contours
- Texture
- Regions

3D Shape Recovery

- From one single image
- From multiple images

Learning Outcomes

By the end of the course, the student must be able to:

- Choose relevant algorithms in specific situations
- Perform simple image-understanding tasks

Teaching methods

Computer vision Page 1 / 2

Ex cathedra lectures and programming exercises using Python.

Assessment methods

With continuous control

Resources

Bibliography

- R. Szeliski, Computer Vision: Computer Vision: Algorithms and Applications, 2010.
- A. Zisserman and R. Hartley, Multiple View Geometry in Computer Vision, Cambridge University Press, 2003.

Ressources en bibliothèque

- Computer Vision: Algorithms and Applications / Szeliski
- Multiple View Geometry in Computer Vision / Zisserman

Moodle Link

• https://go.epfl.ch/CS-442

Computer vision Page 2 / 2