MICRO-512 Image processing II

Sage Daniel, Unser Michaël, Van De Ville Dimitri

Cursus	Sem.	Туре	Language of	English
Biocomputing minor	E	Opt.	teaching	English
Computational Neurosciences minor	E	Opt.	Credits	3 Summor
Computational science and Engineering	MA2, MA4	Opt.	Semester	Spring
Computer science	MA2, MA4	Opt.	Exam	Written
Cybersecurity	MA2, MA4	Opt.	Workload	90h 14
Digital Humanities	MA2, MA4	Opt.	Hours	3 weekly
Environmental Sciences and Engineering	MA2, MA4	Opt.	Lecture	3 weekly
Life Sciences Engineering	MA2, MA4	Opt.	positions	
Microtechnics	MA2, MA4	Opt.		
Minor in Imaging	E	Opt.		
Neuro-X minor	E	Opt.		
Neuro-X	MA2, MA4	Opt.		
Neuroprosthetics minor	E	Opt.		
Photonics minor	E	Opt.		
Robotics, Control and Intelligent Systems		Opt.		
Robotics	MA2, MA4	Opt.		
SC master EPFL	MA2, MA4	Opt.		

Summary

Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and biomedical imaging.

Content

- Directional image analysis. Mathematical foundations. Structure tensor. Steerable filters.
- **Continuous representation of discrete data.** Splines. Interpolation. Geometric transformations. Multi-scale decomposition (pyramids and wavelets).
- Image transforms. Karhunen-Loève transform (KLT). Discrete cosine transform (DCT). JPEG coding. Image pyramids. Wavelet decomposition.
- Reconstruction in the continuum. Wiener filter. Radon transform. Fourier slice theorem. Filtered backprojection.
- **Computational imaging.** Imaging as an inverse problem. Iterative reconstruction methods. Elements of convex analysis. Regularization & sparsity constraints.

Learning Prerequisites

Required courses Image Processing I Recommended courses Signals and Systems I & II, linear algebra, analysis Important concepts to start the course Basic image processing and related analytical tools (Fourier transform, z-tranform, etc.)

Learning Outcomes

- Construct interpolation models and continuous-discrete representations
- Analyze image transforms
- Design image-reconstruction algorithms
- Formalize multiresolution representations using wavelets
- Perform image analysis and feature extraction
- Design image-processing software
- Design image reconstruction algorithms

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Manage priorities.
- Access and evaluate appropriate sources of information.
- Use both general and domain specific IT resources and tools

Assessment methods

The objectives of the course will be assessed as follows:

- 70% final exam
- 30% IP labs

Resources

Moodle Link

• https://go.epfl.ch/MICRO-512