425	Model	predictive	control
420	woder	predictive	control

Jones Colin				
Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching	Linglion
Energy Science and Technology	MA1, MA3	Opt.	Credits Session	4 Winter Fall
Mechanical engineering minor	Н	Opt.	Semester	
Mechanical engineering	MA1, MA3	Opt.	Exam	Written
Microtechnics	MA1, MA3	Opt.	Workload Weeks	120h 14
Robotics, Control and Intelligent Systems		Opt.	Hours	4 weekly
Robotics	MA1, MA3	Obl.	Lecture	2 weekly
Systems Engineering minor	Н	H Opt. Number of		2 weekly
			positions	

Summary

ME-

Provide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex multivariable systems and ability to explicitly enforce constraints on system behavior.

Content

- Review of convex optimization and required optimal control theory.
- Receding-horizon control for constrained linear systems.
- Practical issues: Tracking and offset-free control of constrained systems.
- Theoretical properties of constrained control: Constraint satisfaction and invariant set theory, Stability of MPC.
- Introduction to advanced topics in predictive control.
- Simulation-based project providing practical experience with MPC.

Keywords

Multi-variable control, Constrained systems, Model-based Control, Optimization

Learning Prerequisites

Required courses

Automatique or Control Systems

Recommended courses

• Multivariable systems or Dynamic coordination

Important concepts to start the course

- State-space modeling
- Basic concepts of stability
- Linear quadratic regulation

Learning Outcomes

- By the end of the course, the student must be able to:
 - Design an advanced controller for a dynamic system, A11
 - Assess / Evaluate the stability, performance and robustness of a closed-loop system, A12
 - Work out / Determine the performance (by simulations or experiments) of a mechatronic system, A21
 - Assess / Evaluate Define (specifications) the control performance for mechatronic systems, A18

Transversal skills

• Write a scientific or technical report.

Teaching methods

Lectures, exercises and course project

Expected student activities

- Participate in lectures, exercises and course project
- Homework of about 2 hours per week

Assessment methods

- Reports on weekly exercises
- Report on simulation-based project
- Written final exam

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Bibliography All material can be downloaded from the moodle site.

Ressources en bibliothèque

- Predictive Control with Constraints / Maciejowski
- Model Predictive Control: Theory and Design / Rawlings
- Convex Optimization / Boyd
- Predictive Control for linear and hybrid systems / Borrelli
- Numerical Optimization / Nocedal

Websites

http://la.epfl.ch/teaching/mpc

Moodle Link

• https://go.epfl.ch/ME-425