CS-487 Industrial automation

Sommer Philipp Alexande	r, Tournier Jea	an-Charles		
Cursus	Sem.	Type	Language of	English
Computer science	MA2, MA4	Opt.	teaching Credits Session Semester Exam Workload Weeks Hours Lecture Project Number of positions	Liigiisii
Cybersecurity	MA2, MA4	Opt.		3 Summer Spring Oral 90h 14 3 weekly 2 weekly 1 weekly
Electrical and Electronical Engineering	MA2, MA4	Opt.		
Energy Science and Technology	MA2, MA4	Opt.		
Mechanical engineering	MA2, MA4	Opt.		
Microtechnics	MA2, MA4	Opt.		
Robotics, Control and Intelligent Systems		Opt.		
Robotics	MA2, MA4	Opt.		
SC master EPFL	MA2, MA4	Opt.		

Remark

This course can be taken by students of all engineering sections.

Summary

This course consists of two parts: 1) architecture of automation systems, hands-on lab 2) handling of faults and failures in real-time systems, including fault-tolerant computing

Content

Trends like digitalization and internet of things affect the way industrial plants are designed, deployed and operated. Industrial Automation comprises the control, communication and software architecture in (real-time) automation systems: factories, energy production and distribution, vehicles and other embedded systems.

Keywords

- 1. Processes and plants, automation system architecture
- 2. Instrumentation, Programmable Logic Controllers and embedded computers
- 3. Industrial communication networks, field busses
- 4. Field device access protocols and application program interfaces
- 5. Human interface and supervision
- 6. Dependability (Reliability, Availability, Safety, ...)
- 6. Real-time response and performance analysis

Learning Prerequisites

Recommended courses

Communication networks

Learning Outcomes

By the end of the course, the student must be able to:

- Characterize the (software) architecture of a automation system
- · Apply methods and trade-offs in real-time systems
- Analyze a plant
- Propose suitable automation solutions meeting the requirements
- Analyze the reliability, availability, safety of a system

Industrial automation Page 1 / 2

Transversal skills

- Write a scientific or technical report.
- Use both general and domain specific IT resources and tools
- Communicate effectively with professionals from other disciplines.
- · Keep appropriate documentation for group meetings.
- Access and evaluate appropriate sources of information.

Teaching methods

Oral presentation aided by slides, exercises as part of the lecture, practical work (workshop at Siemens and group assignment).

Expected student activities

- Understand material presented during lectures by asking questions and/or independent (online) searches
- Attend Siemens workshop (one full day on Siemens premises in Renens based on availability)
- Work on group assignment
- Hand-in artifacts for assignment on time

Assessment methods

Assignment 25% and final oral exam 75%

Resources

Bibliography

Introduction to Industrial Automation, Stamatios Manesis & George Nikolakopoulos, CRC Press, 2018

Ressources en bibliothèque

• Introduction to Industrial Automation / Manesis

Moodle Link

• https://go.epfl.ch/CS-487

Industrial automation Page 2 / 2